Cho hình bình hàng ABCD và đường thẳng d qua đỉnh A cắt đường chéo BD Gọi B', C', D' lần lượt là hình chiếu của B, C, D trên đường thẳng d Tìm hệ thức của BB', CC', DD'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D D' B' C' O d
- Gọi đường thẳng d cắt CD tại O
-Xét \(\Delta C'CO\)và \(\Delta B'BA\) , ta có :
+ \(\widehat{CC'O}=\widehat{BB'A}=90^o\)
+ \(\widehat{C'OC}=\widehat{B'AB}\)(2 góc ở vị trí so le trong )
=> \(\Delta C'CO~\Delta B'BA\left(g.g\right)\)
=> \(\frac{CC'}{CO}=\frac{BB'}{AB}\)
- Lại có :
- xét \(\Delta D'DO\)và \(\Delta C'CO\) ta có :
+ \(\widehat{DD'O}=\widehat{CC'O}=90^o\)
+ \(\widehat{D'OD}=\widehat{C'OC}\)( so le trong )
=> \(\Delta D'DO~\Delta C'CO\left(g.g\right)\)
=> \(\frac{DD'}{OD}=\frac{CC'}{OC}=\frac{CC'+DD'}{OD+OC}=\frac{CC'+DD'}{CD}=\frac{BB'}{AB}\)
MÀ AB = CD
nên ta có : CC' + DD' = BB'
A B C D E F M N P G
Tứ giác ABCD là hình bình hành => AB//CD; AD//BC.
=> Giao điểm của AC; BD là trung điểm của mỗi đường
=> N là trung điểm BD (1)
Ta có: AE//BD. Mà AD//BE => Tứ giác AEBD là hình bình hành.
=> 2 đường chéo DE và AB cắt nhau tại trung điểm của mỗi đường.
=> M là trung điểm AB (2)
Tương tự: Tứ giác ABDF là hình bình hành
=> P là trung điểm AD (3)
Từ (1); (2) và (3) => G là trọng tâm của tam giác BAD.
=> AN, DM, BP đồng quy = >AC; DE; BF đồng quy (điều cần c/m).
Ta có DAOK = DCOH Þ OK =OH, DDOE = DBOF Þ OE = OF Þ EHFK là hình bình hành
ABCD là hbh=> AD//BC=> góc DAC= góc ACB và AO=OC
Xét tam giác AOE và tam giác COF ta có
góc AOE = góc COF (2 góc đối xừng)
AO=OC
góc DAC= góc ACB
=> tam giác AOE = tam giác COF=> OE=OF
CHứng minh tương tự ta có tam giác AOK= tam giác COH=> OK=OH
Xét tứ giác EHFK có EH và FK là 2 đường chéo cắt nhau tại O
lại có OE=OF
OH=OK
=> EHFk là hình bình hành (do 2 đường chéo cắt nhau tại trung điểm mỗi đường)