K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

d.

= 2x\(^2\)-4x-6x+12

=2x(x-2)-6(x-2)

=(2x-6)(x-2)

8 tháng 8 2017

a.

= \(x^2\)+2x+5x+10

=x(x+2) +5(x+2)

=(x+5)(x+2)

27 tháng 10 2021

\(a,=\left(x+1\right)\left(x+3\right)\\ b,=-5x^2+15x+x-3=\left(x-3\right)\left(1-5x\right)\\ c,=2x^2+2x+5x+5=\left(2x+5\right)\left(x+1\right)\\ d,=2x^2-2x+5x-5=\left(x-1\right)\left(2x+5\right)\\ e,=x^3+x^2-4x^2-4x+x+1=\left(x+1\right)\left(x^2-4x+1\right)\\ f,=x^2+x-5x-5=\left(x+1\right)\left(x-5\right)\)

25 tháng 12 2018

a) (x - y)(x + y + 3).                    b) (x + y - 2xy)(2 + y + 2xy).

c) x 2 (x + l)( x 3  -  x 2  + 2).              d) (x – 1 - y)[ ( x   -   1 ) 2   +   ( x   -   1 ) y   +   y 2 ].

3 tháng 11 2018

16 tháng 8 2021

casio fx 570 thì ấn mode => 5 => 3 sau điền hệ số a;b;c

casio fx 580 thì ấn mode => 9 => 2 => 2 => điền hệ số a;b;c

16 tháng 8 2021

có cả cách này à =)))

menu setup -> 9 -> 2 - > 2 (pt cần phân tích)  -> nhập hệ số của pt vào từng biến thích hợp -> ''='' 

VD : \(A=x^2+4x-5\)có nghiệm \(x_1=1;x_2=-5\)

vậy đa thức cần phân tích là : \(\left(x-1\right)\left(x+5\right)=x^2+5x-x-5\)

Vậy \(A=x^2+4x-5=x^2+5x-x-5=\left(x-1\right)\left(x+5\right)\)

tương tự nhé 

24 tháng 9 2019

Cách 1: Tách một hạng tử thành tổng hai hạng tử để xuất hiện nhân tử chung.

a) x2 – 3x + 2

= x2 – x – 2x + 2 (Tách –3x = – x – 2x)

= (x2 – x) – (2x – 2)

= x(x – 1) – 2(x – 1) (Có x – 1 là nhân tử chung)

= (x – 1)(x – 2)

Hoặc: x2 – 3x + 2

= x2 – 3x – 4 + 6 (Tách 2 = – 4 + 6)

= x2 – 4 – 3x + 6

= (x2 – 22) – 3(x – 2)

= (x – 2)(x + 2) – 3.(x – 2) (Xuất hiện nhân tử chung x – 2)

= (x – 2)(x + 2 – 3) = (x – 2)(x – 1)

b) x2 + x – 6

= x2 + 3x – 2x – 6 (Tách x = 3x – 2x)

= x(x + 3) – 2(x + 3) (có x + 3 là nhân tử chung)

= (x + 3)(x – 2)

c) x2 + 5x + 6 (Tách 5x = 2x + 3x)

= x2 + 2x + 3x + 6

= x(x + 2) + 3(x + 2) (Có x + 2 là nhân tử chung)

= (x + 2)(x + 3)

Cách 2: Đưa về hằng đẳng thức (1) hoặc (2)

a) x2 – 3x + 2

Giải bài tập Vật lý lớp 10

(Vì có x2 và Giải bài tập Vật lý lớp 10 nên ta thêm bớt Giải bài tập Vật lý lớp 10 để xuất hiện HĐT)

Giải bài tập Vật lý lớp 10

= (x – 2)(x – 1)

b) x2 + x - 6

Giải bài tập Vật lý lớp 10

= (x – 2)(x + 3).

c) x2 + 5x + 6

Giải bài tập Vật lý lớp 10

= (x + 2)(x + 3).

19 tháng 1 2017

a) (x - 2)(x - 3).                        b) 3(x - 2)(x + 5).

c) (x - 2)(3x + 1).                     d) (x-2y)(x - 5y).

e) (x + l)(x + 2)(x - 3).             g) (x-1)(x + 3)( x 2  + 3).

h) (x + y - 3)(x - y + 1).

9 tháng 12 2023

Bài 3

a) x² + 10x + 25

= x² + 2.x.5 + 5²

= (x + 5)²

b) 8x - 16 - x²

= -(x² - 8x + 16)

= -(x² - 2.x.4 + 4²)

= -(x - 4)²

c) x³ + 3x² + 3x + 1

= x³ + 3.x².1 + 3.x.1² + 1³

= (x + 1)³

d) (x + y)² - 9x²

= (x + y)² - (3x)²

= (x + y - 3x)(x + y + 3x)

= (y - 2x)(4x + y)

e) (x + 5)² - (2x - 1)²

= (x + 5 - 2x + 1)(x + 5 + 2x - 1)

= (6 - x)(3x + 4)

9 tháng 12 2023

Bài 4

a) x² - 9 = 0

x² = 9

x = 3 hoặc x = -3

b) (x - 4)² - 36 = 0

(x - 4 - 6)(x - 4 + 6) = 0

(x - 10)(x + 2) = 0

x - 10 = 0 hoặc x + 2 = 0

*) x - 10 = 0

x = 10

*) x + 2 = 0

x = -2

Vậy x = -2; x = 10

c) x² - 10x = -25

x² - 10x + 25 = 0

(x - 5)² = 0

x - 5 = 0

x = 5

d) x² + 5x + 6 = 0

x² + 2x + 3x + 6 = 0

(x² + 2x) + (3x + 6) = 0

x(x + 2) + 3(x + 2) = 0

(x + 2)(x + 3) = 0

x + 2 = 0 hoặc x + 3 = 0

*) x + 2 = 0

x = -2

*) x + 3 = 0

x = -3

Vậy x = -3; x = -2

8 tháng 10 2021

\(a,=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\\ b,=4x^2\left(x^2+2x+1\right)=4x^2\left(x+1\right)^2\\ c,=xy^2\left(x^2-2xy+y^2\right)=xy^2\left(x-y\right)^2\\ d,=\left(x-y\right)\left(x+y\right)-7\left(x-y\right)=\left(x-y\right)\left(x+y-7\right)\\ e,=\left(5x-2y\right)\left(5x+2y\right)\\ f,=x^2+3x+4x+12=\left(x+3\right)\left(x+4\right)\\ i,=x^2+2x-7x-14=\left(x+2\right)\left(x-7\right)\)

22 tháng 12 2021

a: =x(x-5)

22 tháng 12 2021

a) \(=x\left(x-5\right)\)

b) \(=\left(x+3y-3y\right)\left(x+3y+3y\right)=x\left(x+6y\right)\)

c) \(=x\left(x+y\right)-3\left(x+y\right)=\left(x+y\right)\left(x-3\right)\)

a: \(x^2-6x+5=\left(x-5\right)\left(x-1\right)\)

b: \(x^2-x-12=\left(x-4\right)\left(x+3\right)\)

c: \(x^2+8x+15=\left(x+5\right)\left(x+3\right)\)

d: \(2x^2-5x-12=\left(x-4\right)\left(2x+3\right)\)

e: \(x^2-13x+36=\left(x-9\right)\left(x-4\right)\)