K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

i don no

7 tháng 8 2017

hepl me

AH
Akai Haruma
Giáo viên
23 tháng 8 2017

Lời giải:

\(a,b>0\) nên từ \(a^2+b^2=1\Rightarrow a^2=1-b^2<1\)

\(\)Tương tự, \(b^2<1\)

\(\Leftrightarrow \left\{\begin{matrix} a^8<1\\ b^8<1\end{matrix}\right.\)

Do đó, \(\left\{\begin{matrix} a^{10}=a^2.a^8< a^2\\ b^{10}=b^2.b^8< b^2\end{matrix}\right.\Rightarrow a^{10}+b^{10}< a^2+b^2=1\)

Ta có đpcm.

23 tháng 8 2017

bạn làm giông thầy mink làm đó

23 tháng 7 2017

\(a^2+b^2\le1+ab\)

\(\Leftrightarrow a^2-ab+b^2\le1\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\le a+b\)

\(\Leftrightarrow a^3+b^3\le a+b\)

\(\Leftrightarrow\left(a^3+b^3\right)\left(a^3+b^3\right)\le\left(a+b\right)\left(a^5+b^5\right)\) ( \(a^3+b^3=a^5+b^5\))

\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+ab^5+a^5b+b^6\)

\(\Leftrightarrow a^5b+ab^5\ge2a^3b^3\)

\(\Leftrightarrow a^5b+ab^5-2a^3b^3\ge0\)

\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow ab\left(a^2-b^2\right)^2\ge0\) (luôn đúng \(\forall a;b>0\))

Vậy \(a^2+b^2\le1+ab\)

\(\Leftrightarrow\left(a+b\right)^2-2\left(ab+1\right)+\left(\frac{ab+1}{a+b}\right)^2=0\)

\(\Leftrightarrow\left(a+b-\frac{ab+1}{a+b}\right)^2=0\)

\(\Leftrightarrow ab+1=\left(a+b\right)^2\Rightarrow\sqrt{ab+1}=a+b\in Q\left(Q.E.D\right)\)