7 Vì x\(\in\)Z biết:
a) (2x-3) \(⋮\) (x-1)
b) (3x+2)\(⋮\) (2x-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(2x-3\right)n-2n\left(n+2\right)\)
\(=n\left(2x-3-2n-4\right)\)
\(=-7n\)
Vì \(-7⋮7\Rightarrow-7n⋮7\) => ĐPCM
\(b,n\left(2n-3\right)-2n\left(n+1\right)\)
\(=n\left(2n-3-2n-2\right)\)
\(=-5n⋮5\) (ĐPCM)
Rút gọn
\(a,\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x^2+33x-10x-55-6x^2-14x-9x-21\)
\(=-76\)
\(b,\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\)
\(=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x^2+2x+1\)
\(=9\)
\(c,3x^2\left(x^2+2\right)+4x\left(x^2-1\right)-\left(x^2+2x+3\right)\left(3x^2-2x+1\right)\)
\(=3x^4+6x^2+4x^3-4x-3x^4+2x^3-x^2-6x^3+4x^2-2x-9x^2+6x-3\)
= -3
B1:
a) \(\left(10x+9\right)x-\left(5x-1\right)\left(2x+3\right)=8\)
\(10x^2+9x-10x^2-15x+2x+3-8=0\)
\(-4x-5=0\)
\(-4x=5\Leftrightarrow x=-\dfrac{5}{4}\)
b) \(\left(3x-5\right)\left(7-5x\right)+\left(5x+2\right)\left(3x-2\right)-2=0\)
\(21x-15x^2-35+25x+15x^2-10x+6x-4-2=0\)
\(42x-41=0\)
\(x=\dfrac{41}{42}\)
3.
\(x=\left|2\right|\Rightarrow x=\pm2\)
Thay x = 2 vào A ta có:
A = (3.2+5)(2.2+1) + (4.2+1)(5.2+2)
= 11.5 + 9.12
= 55 + 108
= 163
Thay x = -2 vào A ta có:
A = (-2.3+5)(-2.2+1) + (-2.4+1)(-2.5+2)
= (-1)(-3) + (-7)(-8)
= 3 + 56
= 59
Thay x = -1 vào B ta có:
B = (-1-3)(-1+7) - (-1.2-5)(-1-1)
= (-4).6 - (-7)(-2)
= -24 - 14
= -38
Vậy \(A=163\Leftrightarrow x=2\)
\(A=59\Leftrightarrow x=-2\)
\(B=-38\Leftrightarrow x=-1\)
a)
\(3x\left(x+1\right)-6\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(3x-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
b)
\(2x+25-2\left(10-3x\right)=0\\ \Leftrightarrow8x+5=0\\ \Leftrightarrow x=-\dfrac{5}{8}\)
c)
\(\left|x-3\right|=7-\left(-2\right)\\ \Rightarrow\left|x-3\right|=9\\ \Rightarrow\left[{}\begin{matrix}x=12\\x=-6\end{matrix}\right.\)
Chứng tỏ rằng các đa thức sau ko phụ thuộc vào biến
a) Ta có: \(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x^2+33x-10x-55-\left(6x^2+14x+9x+21\right)\)
\(=6x^2+23x-55-6x^2-23x-21\)
=-74
Vậy: Đa thức A không phụ thuộc vào biến(đpcm)
b) Ta có: \(B=\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)
\(=2x^2+3x-10x-15-2x^2+6x+x+7\)
\(=-8\)
Vậy: Đa thức B không phụ thuộc vào biến(đpcm)
c) Ta có: \(C=4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)
\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)
\(=-24\)
Vậy: Đa thức C không phụ thuộc vào biến(đpcm)
d) Ta có: \(D=x\left(y+z-yz\right)-y\left(z+x-zx\right)+z\left(y-x\right)\)
\(=xy+xz-xyz-yz-xy+xyz+zy-zx\)
=0
Vậy: Đa thức D không phụ thuộc vào biến(đpcm)
a) Ta có :
\(2x-3⋮x-1\)
Mà \(x-1⋮x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3⋮x-1\\2x-2⋮x-1\end{matrix}\right.\)
\(\Leftrightarrow1⋮x-1\)
Vì \(x\in Z\Leftrightarrow x-1\in Z;x-1\inƯ\left(1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\Rightarrow x=0\left(tm\right)\\x-1=-1\Leftrightarrow x=-2\left(tm\right)\end{matrix}\right.\)
Vậy ...............
b) Ta có :
\(3x+2⋮2x-1\)
Mà \(2x-1⋮2x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x+4⋮2x-1\\6x-3⋮2x-1\end{matrix}\right.\)
\(\Leftrightarrow7⋮2x-1\)
Vì \(x\in Z\Leftrightarrow2x-1\in Z;2x-1\inƯ\left(7\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=7\Leftrightarrow x=4\left(tm\right)\\2x-1=-7\Leftrightarrow x=-4\left(tm\right)\end{matrix}\right.\)
Vậy ............