Tìm n thuộc N sao cho
a) \(8⋮\left(n-2\right)\) b) \(\left(2n+1\right)⋮\left(6-n\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)
\(=5n^2+5n=5\left(n^2+n\right)⋮5\)
b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+30n+n+5-6n^2+3n-10n+5\)
\(=24n+10⋮2\)
d: \(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)⋮6\)
\(b.\)\(\left(2n-1\right)^3-\left(2n-1\right)=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)
\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1^2\right]=\left(2n-1\right)\left(2n-1-1\right)\left(2n-1+1\right)\)
\(\text{Áp dụng hằng đẳng thức }\)\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\(=\left(2n-1\right)\left(2n-2\right).2n=\left(2n-1\right).2\left(n-1\right).2n\)
\(=\left(2n-1\right).4.n\left(n-1\right)\)
\(n\left(n-1\right)⋮2\)(vì là tích 2 số liên tiếp)
\(\Rightarrow\left(2n-1\right).4.n\left(n-1\right)⋮\left(4.2\right)=8\)
\(\left(2n-1\right).4.n\left(n-1\right)⋮8\RightarrowĐPCM\)
a.\(2n^2-3n+1=2n\times\left(n-1\right)-\left(n-1\right)=\left(2n-1\right)\times\left(n-1\right)\Rightarrow2n-1⋮n-1\)
\(\Rightarrow2\left(n-1\right)+1⋮n-1\Rightarrow1⋮n-1\Rightarrow n-1\inƯ\left(1\right)=\left\{1\right\}\Rightarrow n=2\)
b.Tách tương tự nha
\(2n^2-3n+1=\left(2n^2-2n\right)-n+1=2n\left(n-1\right)-n+1\)\(\Rightarrow-n+1⋮n-1\Rightarrow-\left(n-1\right)⋮n-1\)
vậy với mọi x thuộc N đều t/m
b) tương tự nha
\(n^3+n^2+2n^2+2n\)
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(n\left(n+1\right)\left(n+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3. Mà 2 và 3 nguyên tố cùng nhau nên tích chia hết cho 6.
c) \(n^2+14n+49-n^2+10n-25\)
\(=24n+24=24\left(N+1\right)\) CHIA HẾT CHO 24
b)
Để \(2n⋮\left(n-1\right)\)
\(\Rightarrow2.\left(n-1\right)+2⋮\left(n-1\right)\)
\(\Rightarrow2⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(2\right)=\left\{1;2\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}n-1=1\Rightarrow n=2\\n-1=2\Rightarrow n=3\end{matrix}\right.\)
Vậy n=2;n=3 thì \(2n⋮\left(n-1\right)\)
c)
Để \(\left(3n-8\right)⋮\left(n-4\right)\)
\(\Rightarrow3.\left(n-4\right)+4⋮\left(n-4\right)\)
\(\Rightarrow4⋮\left(n-4\right)\)
\(\Rightarrow\left(n-4\right)\inƯ\left(4\right)=\left\{1;2;4\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}n-4=1\Rightarrow n=5\\n-4=2\Rightarrow n=6\\n-4=4\Rightarrow n=8\end{matrix}\right.\)
Vậy với .....................
a, Do 8 \(⋮n-2\)
=> n - 2 \(\inƯ\left(8\right)=\left\{\pm1;2;4;8\right\}\)
=> n = 3; 1; 4; 6; 10 (thỏa mãn)
b, Do 2n + 1 \(⋮6-n\)
<=> -2.(6 - n) + 13 \(⋮6-n\)
<=> 13 \(⋮6-n\)
=> 6 - n \(\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
=> n = 5; 7; -7; 19
Mà n \(\in N\Rightarrow n=5;7;19\)
@Đinh Hải Nam