tìm dư của phép chia
(x105+x90+x75+...+x15+1):(x2-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tìm dư của phép chia đa thức f(x) cho (x^2 + 1)(x - 2), chúng ta cần sử dụng định lý dư của đa thức. Theo định lý dư của đa thức, nếu chia đa thức f(x) cho đa thức g(x) và được dư đa thức r(x), thì ta có: f(x) = q(x) * g(x) + r(x) Trong trường hợp này, chúng ta biết rằng f(x) chia cho x - 2 dư 7 và chia cho x^2 + 1 dư 3x + 5. Vì vậy, chúng ta có các phương trình sau: f(x) = q(x) * (x - 2) + 7 f(x) = p(x) * (x^2 + 1) + (3x + 5) Để tìm dư của phép chia f(x) cho (x^2 + 1)(x - 2), ta cần tìm giá trị của r(x). Để làm điều này, chúng ta cần giải hệ phương trình trên. Đầu tiên, chúng ta sẽ giải phương trình f(x) = q(x) * (x - 2) + 7 để tìm giá trị của q(x). Sau đó, chúng ta sẽ thay giá trị của q(x) vào phương trình f(x) = p(x) * (x^2 + 1) + (3x + 5) để tìm giá trị của p(x) và r(x). Nhưng trước tiên, chúng ta cần biết đa thức f(x) là gì. Bạn có thể cung cấp thông tin về đa thức f(x) không?
Rõ ràng đa thức \(x^3-1\) chia hết cho đa thức \(x^2+x+1\).
Ta tách: \(x^9+x^6+x^3+1=\left(x^9-1\right)+\left(x^6-1\right)+\left(x^3-1\right)+4=\left(x^3-1\right)\left(x^6+x^3+1\right)+\left(x^3-1\right)\left(x^3+1\right)+\left(x^3-1\right)+4\).
Từ đây suy ra đa thức đó chia cho đa thức \(x^2+x+1\) được đa thức dư là 4.
\(\dfrac{2x^4-3x^3+4x^2+1}{x^2-1}\)
\(=\dfrac{2x^4-2x^2-3x^3+3x+6x^2-6-3x+7}{x^2-1}\)
\(=2x^2-3x+6+\dfrac{-3x+7}{x^2-1}\)
Để đây là phép chia hết thì -3x+7=0
hay \(x=\dfrac{7}{3}\)
Ta có: \(\left(15x-6x+7\right):\left(2x+1\right)=5\)
Áp dụng định lý Bozout, ta có:
\(f\left(\frac{-1}{2}\right)=15\cdot\frac{-1}{2}-6\cdot\frac{-1}{2}+7=\frac{5}{2}\)
Vậy số dư là 2,5
Ta có đa thức x 2 + 3 x + 2 5 + x 2 - 4 x - 4 5 - 1 chưa (x + 1) nên phần dư là một hằng số
Gọi thương là Q(x) và dư r. Khi đó với mọi x ta có
x 2 + 3 x + 2 5 + x 2 - 4 x - 4 5 - 1 = Q(x)(x + 1) + r (1)
Thay x = -1 vào (1) ta được
( ( - 1 ) 2 + 3 . ( - 1 ) + 2 ) 5 + ( ( - 1 ) 2 – 4 ( - 1 ) – 4 ) 5 – 1 = Q(x).(-1 + 1) + r
r = 0 5 + 1 5 – 1 ó r = 0
vậy phần dư của phép chia là r = 0.
đáp án cần chọn là: C
Đa thức dư là – x + 1 có hệ số tự do là 1.
Đáp án cần chọn là: C
Vì đa thức chia có dạng bậc 2 \(\Rightarrow\) đa thức dư sẽ là \(ax+b\)
Gọi Q(x) là thương trong phép chia \(\left(x^{105}+x^{90}+x^{75}+...+x^{15}+1\right):\left(x^2-1\right)\) ta có:
\(x^{105}+x^{90}+x^{75}+...+x^{15}+1=\left(x^2-1\right)Q\left(x\right)+ax+b\)
Tại \(x=1\) có: \(8=a+b\) (1)
Tại \(x=-1\) có: \(-a+b=0\left(2\right)\)
Trừ (1) cho (2) được:
\(a+b+a-b=8\)
\(\Rightarrow2a=8\)
\(\Rightarrow a=4\)
Khi đó: b = 4
Vậy dư của phép chia là \(4x+4\).