K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2016

Mình mới học lớp 6

Nên không biết nha

Chúc các bạn học giỏi

30 tháng 12 2016

\(\left(1+a\right)\left(1+\frac{1}{b}\right)+\left(1+b\right)\left(1+\frac{1}{a}\right)=2+a+b+\frac{a}{b}+\frac{b}{a}+\frac{1}{a}+\frac{1}{b}\)

\(\ge2+2+a+b+\frac{4}{a+b}\)

\(=4+a+b+\frac{2}{a+b}+\frac{2}{a+b}\)

 \(\ge4+2\sqrt{2}+\frac{2}{\sqrt{2\left(a^2+b^2\right)}}\)

\(=4+2\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)

Dấu = xảy ra khi \(a=b=\frac{1}{\sqrt{2}}\)

2 tháng 8 2019

\(M=\left(a^2+\frac{1}{16a^2}\right)+\left(b^2+\frac{1}{16b^2}\right)+\frac{15}{16}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)

\(\ge2\sqrt{\frac{a^2}{16a^2}}+2\sqrt{\frac{b^2}{16b^2}}+\frac{15\left(\frac{1}{a}+\frac{1}{b}\right)^2}{32}\ge1+\frac{\frac{240}{\left(a+b\right)^2}}{32}\ge\frac{17}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=\frac{1}{2}\)

19 tháng 12 2019

Ta co:

\(M=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2=\left(\frac{1}{a}-2\right)^2+\left(\frac{1}{b}-2\right)^2+6\left(\frac{1}{a}+\frac{1}{b}\right)-6\ge\frac{24}{a+b}-6=18\)

Dau '=' xay ra khi \(a=b=\frac{1}{2}\)

14 tháng 5 2021

\(M=\frac{1}{a^2+b^2}+\frac{2}{ab}+4ab\)

\(=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{5}{4ab}\)

\(\ge\frac{4}{\left(a+b\right)^2}+2\sqrt{\frac{1}{4ab}.4ab}+\frac{5}{4ab}\)

( Nếu đi thi thì sẽ phải chứng minh \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) cái này nhân chéo và cô si là xong )

Ta có BĐT phụ: \(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)( đúng )

\(\Rightarrow M\ge\frac{4}{1}+2+5=11\)

Dấu "=" xảy ra <=> a=b=1/2 

Vậy ...

29 tháng 5 2021

Ta có \(\frac{a}{b}+\frac{b}{a}\ge2\)

=> \(\frac{a^2+b^2}{ab}\ge2\)

=> a2 + b2 \(\ge\)2ab

=>  a2 + b2 - 2ab\(\ge\)0

=> (a - b)2 \(\ge\)0 (đúng)  

Dấu "=" xảy ra <=> a - b = 0 => a = b

=> Bất đẳng thức được chứng minh

29 tháng 5 2021

P = \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

=> \(\left(a+b+c\right).P=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

=> \(3P=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

=> \(3P=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\ge3+2+2+2=9\left(cmt\right)\)

=> P \(\ge3\)

Dấu "=" xảy ra <=> a = b = c 

mà a + b + c = 3

=> a = b = c = 1

Vậy Min P = 3 <=> a = b= c = 1

21 tháng 9 2018

từ giả thiết ta có

a+b+c=0

<=>  a=-(b+c0

         a2=b2  +c2 +2bc

tương tự   b2=a2+c2+2ac

                c2=a2+b2+2ab

thay vào Q ta đc

\(Q=\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+c^2-b^2}\)

\(Q=\frac{1}{a^2+b^2-a^2-b^2-2ab}+\frac{1}{b^2+c^2-b^2-c^2-2bc}+\frac{1}{a^2+c^2-a^2-c^2-2ac}\)

\(Q=\frac{-1}{2ab}-\frac{1}{2bc}-\frac{1}{2ac}\)

\(Q=\frac{-b-a-c}{2abc}\)

\(Q=\frac{-\left(a+b+c\right)}{2abc}\)

\(Q=0\)

Vậy với a,b,c khác 0, a+b+c=0 thì Q=0

11 tháng 12 2017

1) Đề sai. Như thế này mới đúng.

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\dfrac{b+a}{ba}\ge\dfrac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(Luôn đúng)

Vậy ta có đpcm

2) Áp dụng bài 1), ta có:

\(P=\dfrac{1}{a^2+b^2}+\dfrac{1}{ab}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)

\(P\ge\dfrac{4}{\left(a+b\right)^2}+\dfrac{1}{\dfrac{2\left(a+b\right)^2}{4}}=4+2=6\)

MinP là 6 khi \(a=b=\dfrac{1}{2}\)