cho 2>a,b,c>0. Chứng minh a(2-b),b(2-c),c(2-a) không thể dồng thời lớn hơn 1. giúp mình đi mà
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xí câu 1:))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)
Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )
Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=2 => x=y=2
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
Ta có:\(a\ge b\ge c\ge0\)
\(\Rightarrow a^2\ge b^2\ge c^2\ge0\)
\(\Rightarrow\hept{\begin{cases}a^2-b^2\ge0\\b^2-c^2\ge0\\c^2-a^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}c^3\left(a^2-b^2\right)\ge0\\a^3\left(b^2-c^2\right)\ge0\\b^3\left(c^2-a^2\right)\ge0\end{cases}}}\)
\(\Rightarrow c^3\left(a^2-b^2\right)+a^3\left(b^2-c^2\right)+b^3\left(c^2-a^2\right)\ge0\)
\(\Rightarrow a^3\left(b^2-c^2\right)+b^3\left(c^2-a^2\right)+c^3\left(a^2-b^2\right)\ge0\)
Do a, b, c >0
=> a+b+c>0 và \(\dfrac{a^2}{c}\)+\(\dfrac{b^2}{a}\)+\(\dfrac{c^2}{b}\) >0
Áp dụng bất đẳng thức Cô si ta có:
\(\dfrac{a^2}{c}\)+\(\dfrac{b^2}{a}\)+\(\dfrac{c^2}{b}\) \(\ge\) 3 \(\sqrt[3]{\dfrac{a^2b^2c^2}{abc}}\) = 3\(\sqrt[3]{abc}\)
a+b+c \(\ge\) 3 \(\sqrt[3]{abc}\)
=> \(\dfrac{a^2}{c}\)+\(\dfrac{b^2}{a}\)+\(\dfrac{c^2}{b}\) - (a+b+c) \(\ge\) 3\(\sqrt[3]{abc}\) - 3\(\sqrt[3]{abc}\)
=>\(\dfrac{a^2}{c}\)+\(\dfrac{b^2}{a}\)+\(\dfrac{c^2}{b}\)- (a+b+c) \(\ge\) 0
=> \(\dfrac{a^2}{c}\)+\(\dfrac{b^2}{a}\)+\(\dfrac{c^2}{b}\) \(\ge\) a+b+c (dpcm)
Vì 2>a,b,c>0 => a(2-b); b(2-c); c(2-a) là các số thực dương.
Áp dụng bất đẳng thức Cauchy cho 6 số, ta có:
\(\dfrac{a+\left(2-b\right)+b+\left(2-c\right)+c+\left(2-a\right)}{6}\ge\)
\(\sqrt[6]{a.\left(2-b\right).b.\left(2-c\right).c.\left(2-a\right)}\)
\(\Rightarrow\dfrac{a+b+c-a-b-c+2+2+2}{6}\ge\sqrt[6]{a.\left(2-b\right).b.\left(2-c\right).c.\left(2-a\right)}\)
\(\Rightarrow1\ge\sqrt[6]{a.\left(2-b\right).b.\left(2-c\right).c.\left(2-a\right)}\)
\(\Rightarrow1^6\ge a.\left(2-b\right).b.\left(2-c\right).c.\left(2-a\right)\Rightarrow1\ge a.\left(2-b\right).b.\left(2-c\right).c.\left(2-a\right)\)
=> a(2-b); b(2-c); c(2-a) không đồng thời lớn hơn 1
=> đpcm
cảm ơn bạn!!!!!!!!!!!!!!!!!!!!