Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
drom room có nghĩa sang tiếng việt là phòng ngủ tập thể
chúc
bạn
hok
tốt
nhé
nhớ
k
cho
mình
nha
2xy - 3x + 5y=4
2x(y-1) + 5y = 4
2x(y-1) + 5y - 5 = 4 - 5
2x(y-1) - 1(y-1) = -1
(2x-1)(y-1) = -1
Ta thấy -1= (-1).1 => Ta có bảng sau:
2x-1 | -1 | 1 |
y-1 | 1 | -1 |
x | 0 | 1 |
y | 2 | 0 |
Như vậy, ta có 2 trường hợp (x;y) thỏa mãn yêu cầu đề bài là ( 0;2 ) ; ( 1;0 )
Hok tốt~
11)
\(\dfrac{2x}{x+2}\) \(\times\) \(\dfrac{x^{2^{ }}-4}{4}\) - \(\dfrac{x}{2}\)
= \(\dfrac{2x}{x+2}\) \(\times\) \(\dfrac{x^2-2^2}{4}\) - \(\dfrac{x}{2}\)
= \(\dfrac{2x}{x+2}\) \(\times\) \(\dfrac{\left(x-2\right)\left(x+2\right)}{4}\) - \(\dfrac{x}{2}\)
= \(\dfrac{x\left(x-3\right)}{2}\)
a: \(Q=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)-2\sqrt{x}\left(\sqrt{x}-2\right)-5\sqrt{x}-2}{x-4}:\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(\sqrt{x}+2\right)^2}\)
\(=\dfrac{x+3\sqrt{x}+2-2x+4\sqrt{x}-5\sqrt{x}-2}{x-4}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)
\(=\dfrac{-x+2\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}+2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)\cdot\left(-1\right)}\cdot\dfrac{\sqrt{x}+2}{\sqrt{x}-3}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
b: Khi x=4-2căn 3 thì \(Q=\dfrac{\sqrt{3}-1+2}{\sqrt{3}-1-3}=\dfrac{\sqrt{3}+1}{\sqrt{3}-4}=\dfrac{-7-5\sqrt{3}}{13}\)
c: Q>1/6
=>Q-1/6>0
=>\(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}-\dfrac{1}{6}>0\)
=>\(\dfrac{6\sqrt{x}+12-\sqrt{x}+3}{6\left(\sqrt{x}-3\right)}>0\)
=>\(\dfrac{5\sqrt{x}+9}{6\left(\sqrt{x}-3\right)}>0\)
=>căn x-3>0
=>x>9
Ta có \(\left|7x+5\right|+4\ge4;2\left|7x+5\right|+11\ge11\)
Do đó \(A=\dfrac{2\left|7x+5\right|+11}{\left|7x+5\right|+4}\le\dfrac{11}{4}\)
Vậy GTLN A là \(\dfrac{11}{4}\Leftrightarrow\left|7x+5\right|=0\Leftrightarrow x=-\dfrac{5}{7}\)
- Nói mỗi lông hút là một tế bào vì mỗi lông hút đều có những thành phần đặc trưng của 1 tế bào như vách tế bào , màng sinh chất , chất tế bào , nhân , không bào ,.....
- Lông hút không tồn tại mãi , đến một thời gian nào đó nó sẽ rụng và được thay thế bởi một lông hút khác .
Trả lời:
\(A=\left(1-\frac{x^2-x}{x-1}\right)\left(1+\frac{x^2+x}{x+1}\right)+x^2\) \(\left(ĐKXĐ:x\ne\pm1\right)\)
\(=\frac{x-1-x^2+x}{x-1}.\frac{x+x+x^2+x}{x+1}+x^2\)
\(=\frac{-x^2+2x-1}{x-1}.\frac{x^2+2x+1}{x+1}\)\(+x^2\)
\(=\frac{-\left(x^2-2x+1\right)}{x-1}.\frac{\left(x+1\right)^2}{x+1}+x^2\)
\(=\frac{-\left(x-1\right)^2}{x-1}.\frac{\left(x+1\right)^2}{x+1}+x^2\)
\(=-\left(x-1\right).\left(x+1\right)+x^2\)
\(=-\left(x^2-1\right)+x^2=-x^2+1+x^2=1\)
\(B=\left(2-\frac{x^2-x}{x-1}\right)\left(2+\frac{x^2+x}{x+1}\right)\) \(\left(ĐKXĐ:x\ne\pm1\right)\)
\(=\frac{2x-2-x^2+x}{x-1}.\frac{2x+2+x^2+x}{x+1}\)
\(=\frac{-x^2+3x-2}{x-1}.\frac{x^2+3x+2}{x+1}\)
\(=\frac{-\left(x^2-3x+2\right)}{x-1}.\frac{x^2+3x+2}{x+1}\)
\(=\frac{-\left(x^2-x-2x+2\right)}{x-1}.\frac{x^2+x+2x+2}{x+1}\)
\(=\frac{-\left[x\left(x-1\right)-2\left(x-1\right)\right]}{x-1}.\frac{x\left(x+1\right)+2\left(x+1\right)}{x+1}\)
\(=\frac{-\left(x-1\right)\left(x-2\right)}{x-1}.\frac{\left(x+1\right)\left(x+2\right)}{x+1}\)
\(=-\left(x-2\right).\left(x+2\right)=-\left(x^2-4\right)=-x^2+4\)