chứng minh biểu thức không phụ thuộc vào x:
(2x+3)(4x\(^2\)-6x+9)-2.(4x\(^3\)-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(6x−5)(x+8)−(3x−1)(2x+3)−9(4x−3)=6x2+43x−40−6x2−7x+3−36x+27=−10
a/ (2x + 1)(4x – 3) – 6x(x + 5) – 2x(x – 7) + 18x
=8x^2-6x+4x-3-6x^2-30x-2x^2+14x+18x
=-3
vậy...
\(\left(6x-5\right)\left(x+8\right)-\left(3x-1\right)\left(2x+3\right)-9\left(4x-3\right)=6x^2+43x-40-6x^2-7x+3-36x+27=-10\)
D=(6x−5)(x+8)−(3x−1)(2x+3)−9(4x−3)
=6x2+48x-5x-40-(6x2+9x-2x-3)-36x+27
=6x2+48x-5x-40-6x2-9x+2x+3-36x+27
=-10
Vậy giá trị của biểu thức D ko phụ thuộc vào biến
D=(6x−5)(x+8)−(3x−1)(2x+3)−9(4x−3)
\(\Rightarrow D=\left(6x^2+48x-5x-40\right)-\left(6x^2+9x-2x-3\right)+\left(-36x+27\right)\)
\(\Rightarrow D=6x^2+48x-5x-40-6x^2-9x+2x+3-36x+27\)
\(\Rightarrow D=\left(6x^2-6x^2\right)+\left(48x-5x-9x-36x+2x\right)-40+3+27\)
\(\Rightarrow D=-40+3+27=-10\)
Vậy biểu thức D không phụ thuộc vào giá trị của biến x.(đpcm)
Tick cho mình với
1. Đề bài sai, các biểu thức này chỉ có giá trị lớn nhất, không có giá trị nhỏ nhất
2.
\(A=\left(2x\right)^3-3^3-\left(8x^3+2\right)\)
\(=8x^3-27-8x^3-2\)
\(=-29\)
\(B=x^3+9x^2+27x+27-\left(x^3+9x^2+27x+243\right)\)
\(=27-243=-216\)
sửa đề lại thành tìm Max nhé1, vì mấy ý này ko có min
\(1,=>D=-\left(x^2-4x-3\right)=-\left(x^2-2.2x+4-7\right)\)
\(=-[\left(x-2\right)^2-7]=-\left(x-2\right)^2+7\le7\)
dấu"=" xảy ra<=>x=2
2, \(E=-2\left(x^2-x+\dfrac{5}{2}\right)=-2[x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{9}{4}]\)
\(=-2[\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}]\le-\dfrac{9}{2}\) dấu"=" xảy ra<=>x=1/2
3, \(F=-\left(x^2+4x-20\right)=-\left(x^2+2.2x+4-24\right)\)
\(=-[\left(x+2\right)^2-24]\le24\) dấu"=" xảy ra<=>x=-2
A = (2x+3)(4x2−6x+9)−2(4x3−1)−36
=8x3-12x2+18x+12x2-18x+27-8x3+2-36
=-7
Ta có: \(A=\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)-36\)
\(=8x^3+27-8x^3+2-36\)
\(=-7\)
1,\(A=3\left(sin^4x+cos^4x\right)-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)\)
\(=3\left(sin^4x+cos^4x\right)-2\left(sin^4x-sin^2x.cos^4x+cos^4x\right)\)
\(=sin^4x+2sin^2x.cos^2x+cos^4x=\left(sin^2x+cos^2x\right)^2=1\)
Vậy...
2,\(B=cos^6x+2sin^4x\left(1-sin^2x\right)+3\left(1-cos^2x\right)cos^4x+sin^4x\)
\(=-2cos^6x+3sin^4x-2sin^6x+3cos^4x\)
\(=-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)
\(=-2\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)\(=cos^4x+sin^4x+2sin^2x.cos^2x=1\)
Vậy...
3,\(C=\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}\right)\right]+\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)
\(=cos\left(-\dfrac{7\pi}{12}\right)+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}+\pi\right)\right]\)
\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)-cos\left(2x-\dfrac{\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}\)
Vậy...
4, \(D=cos^2x+\left(-\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx\right)^2+\left(-\dfrac{1}{2}.cosx+\dfrac{\sqrt{3}}{2}.sinx\right)^2\)
\(=cos^2x+\dfrac{1}{4}cos^2x+\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x+\dfrac{1}{4}cos^2x-\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x\)
\(=\dfrac{3}{2}\left(cos^2x+sin^2x\right)=\dfrac{3}{2}\)
Vậy...
5, Xem lại đề
6,\(F=-cosx+cosx-tan\left(\dfrac{\pi}{2}+x\right).cot\left(\pi+\dfrac{\pi}{2}-x\right)\)
\(=tan\left(\pi-\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=tan\left(\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=cotx.tanx=1\)
Vậy...
A = ( x - 5 )( x2 + 5x + 25 ) - x3 + 2 ( đã sửa )
= x3 - 53 - x3 + 2
= x3 - 125 - x3 + 2
= -123 ( không phụ thuộc vào biến )
=> đpcm
B = ( 2x + 3 )( 4x2 - 6x + 9 ) - 8x( x2 + 2 ) + 16x + 5
= ( 2x )3 + 33 - 8x3 - 16x + 16x + 5
= 8x3 + 27 - 8x3 - 16x + 16x + 5
= 27 + 5 = 32 ( không phụ thuộc vào biến )
=> đpcm
\(A=\left(x-5\right)\left(x^2+5x+25\right)-x^3+2\)
\(=x^3-125-x^3+2\)
\(=-123\left(đpcm\right)\)
\(B=\left(2x+3\right)\left(4x^2-6x+9\right)-8x\left(x^2+2\right)+16x+5\)
\(=8x^3+27-8x^3-16x+16x+5\)
\(=32\left(đpcm\right)\)
\(A=\left(5x-2\right)^2-\left(6x+1\right)^2+11\left(x-2\right)\left(x+2\right)-16\left(3-2x\right)\\ =\left[\left(5x-2\right)+\left(6x+1\right)\right].\left[\left(5x-2\right)-\left(6x+1\right)\right]+11\left(x^2-4\right)-48+32x\\ =-\left(11x-1\right)\left(x+3\right)+11x^2-44-48+32x\\ =-11x^2-32x+3+11x^2-44-48+32x\\ =-11x^2+11x^2-32x+32x+3-44-48=-89\)
Vậy biểu thức A không phụ thuộc vào giá trị của x
\(B=4x\left(x-3\right)-\left(x-5\right)^2-3\left(x+1\right)^2+\left(2x+2\right)^2-\left(4x^2-5\right)\\ =4x^2-12x-\left(x^2-10x+25\right)-3\left(x^2+2x+1\right)+\left(4x^2+8x+4\right)-4x^2+5\\ =4x^2-x^2-3x^2+4x^2-4x^2-12x+10x-6x+8x+25-3+4+5\\ =31\)
Vậy giá trị biểu thức B không phụ thuộc biến x
a) Xem lại đề em nhé!
b) (6x - 5)(x + 8) - (3x - 1)(2x + 3) - 9(4x - 3)
= 6x² + 48x - 5x - 40 - 6x² - 9x + 2x + 3 - 36x + 27
= (6x² - 6x²) + (48x - 5x - 9x + 2x - 36x) + (-40 + 3 + 27)
= -10
Vậy giá trị của biểu thức đã cho không phụ thuộc vào giá trị của biến
\(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(=8x^3+27-8x^3+2=29\)
Vậy biểu thức sau không phụ thuộc vào x