\(\overline{\text{aaa}}\) \(\) chia hết cho 37
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(aaa + bbb) = 111a + 111b = 111( a + b )
Vì 111 chia hết cho 37 => ( a + b ) chia hết cho 37
=> ( aaa + bbb ) chia hết cho 37
(aaa+bbb):37
(a x 100 + a x 10 + a + b x 100 + b x 10 + b ):37
(a x (100 + 10 +1 ) + b x (100 + 10 + 1 ) : 37
(a x 111 + b x 111):37
(111 x (a + b) :37
( 37 x 3 x (a + b) :37
vậy aaa + bbb : 37
(abc) chia hết cho 37=> 100.a + 10.b + c chia hết cho 37
=> 1000.a + 100.b + 10.c chia hết cho 37
=> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
=> 100.b + 10.c + a = (bca) chia hết cho 37
Ta có \(\overline{aaa}=a.111=a.3.37\)
\(=>a.3.37⋮37\)
Vậy \(\overline{aaa}⋮37\left(dpcm\right)\)
Ta có ¯¯¯¯¯¯¯¯¯aaa=a.111=a.3.37aaa¯=a.111=a.3.37
=>a.3.37⋮37=>a.3.37⋮37
Vậy ¯¯¯¯¯¯¯¯¯aaa⋮37(dpcm)
nhân tiện, đề bài có gì đó sai
Trả lời :
a) \(aaa=a.111=a.37.3\)
\(\Rightarrow a⋮3\)
b) \(aaaaaaaaa=a.111111111=3.37037037\)
\(\Rightarrow a⋮3\)
PS : nhớ k
# Aeri #
Bài 1
a, cm : A = 165 + 215 ⋮ 3
A = 165 + 215
A = (24)5 + 215
A = 220 + 215
A = 215.(25 + 1)
A = 215. 33 ⋮ 3 (đpcm)
b,cm : B = 88 + 220 ⋮ 17
B = (23)8 + 220
B = 216 + 220
B = 216.(1 + 24)
B = 216. 17 ⋮ 17 (đpcm)
c, cm: C = 1 - 2 + 22 - 23 + 24 - 25 + 26 -...-22021 + 22022 : 6 dư 1
C=1+(-2+22-23+24- 25+26)+...+(-22017+22018-22019+22020-22021+22022)
C = 1 + 42 +...+ 22016.(-2 + 22 - 23 + 24 - 25 + 26)
C = 1 + 42+...+ 22016.42
C = 1 + 42.(20+...+22016)
42 ⋮ 6 ⇒ C = 1 + 42.(20+...+22016) : 6 dư 1 đpcm
1. Ta có 14 và 28 có cùng số dư khi chia7 là 0
mà 28 - 14 = 14 chia hết cho 7 (đpcm)
2. Ta có : \(\overline{aaa}=\overline{a}.111\)
=> \(\overline{aaa}=\overline{a}.3.37⋮37\)
=> \(\overline{aaa}\) luôn chia hết cho 37 (đpcm)
1, Gọi số thứ nhất có dạng 7k+n ; số thứ 2 có dạng 7x+n;
=> \(7k+n-\left(7x+n\right)=7k-7x=7\left(k-x\right)⋮7\)
2, Ta có: \(\overline{aaa}=100a+10a+a=111a=37.3.a⋮37\)
Do có chứa 1 thừa số là 37;
3, \(\overline{ab}-\overline{ba}=10a+b-\left(10b+a\right)=9a-9b=9\left(a-b\right)⋮9\)
a)aaa=a*111 mà 111=3*37 chia hết cho 37
b)aaa aaa=a*111 111 mà 111 111=3*7*11*13*37 chia hết cho 7
c)abc abc=abc*1001 mà 1001=7*11*13 chia hết cho 11.
\(\overline{aaa}⋮37\)
\(\Rightarrow100a+10a+a⋮37\)
\(\Rightarrow111a⋮37\)
\(\Rightarrow37.3a⋮37\)
\(\Rightarrow a\in R\)
Vậy với mọi \(a\in R\) thỏa mãn điều kiện
aaa=a.111
=a.3.37 thì luôn chia hết cho 37