C/m rằng; 1/3 + 1/30 + 1/32 + 1/35 + 1/45 + 1/47 + 1/50 < 1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Vì góc ABC>góc ACB
nên AC>AB
=>HC>HB
b: Xét ΔABC có
BE là đường cao
AD là đường cao
BE cắt AD tại H
Do đó: H là trực tâm
=>C,H,F thẳng hàng
c: Gọi Mlà trung điểm của BC và lấy N sao cho M là trug điểm của AN
Xét tứgiác ABNC có
M là trung điểm của BC
M là trung điểm của AN
Do đó: ABNC là hình bình hành
Suy ra: AC=BN
Xét ΔACN có AC+CN>AN
=>AC+AB>2AM
=>AC+AB>2AD
`a vdots m,b vdots m`
`=>a+b vdots m`
Mà `a+b+c vdots m`
`=>a+b+c-(a+b) vdots m`
`=>a+b+c-a-b vdots m`
`=>(a-a)+(b-b)+c vdots m`
`=>0+0+c vdots m`
`=>c vdots m(forall a,b,c in Z)`
\(4,VT=-a+b+c-a+b-c+a-b-c=-a+b-c=-\left(a-b+c\right)=VP\\ 5,M=-a+b-b-c+a+c-a=-a\\ M>0\Rightarrow-a>0\Rightarrow a< 0\)
a: Ta có: ΔCAB cân tại C
mà CI là đường cao
nên I là trung điểm của AB
hay IA=IB
b: Xét ΔCHI vuông tại H và ΔCKI vuông tại K có
CI chung
\(\widehat{HCI}=\widehat{KCI}\)
Do đó: ΔCHI=ΔCKI
Suy ra: IH=IK
c: AB=12cm nên AI=6cm
=>CI=8cm
d: Xét ΔCAB có CH/CA=CK/CB
nên HK//AB
Đặt a : c = d dư r
b : c = e dư r
===> ec+r = b ; dc+r = a
====> a-b = dc+r - ec - r = dc - ec = c(d-e) chia hết cho c
b1
Các số tự nhiên chia hết cho 3 có số dư là n;n+1;n+2
Nếu \(n⋮3\Leftrightarrow n\left(n+1\right)\left(n+5\right)⋮3\)
Nếu \(n+1⋮3\Leftrightarrow n\left(n+1\right)\left(n+5\right)⋮3\)
Nếu \(n+2⋮3\Leftrightarrow n\left(n+1\right)\left(n+5\right)=n\left(n+1\right)\left(n+2+3\right)\)
Mà \(3⋮3\)\(\Rightarrow n+2+3⋮3\) \(\Rightarrow n\left(n+1\right)\left(n+2+3\right)⋮3\)
Hay \(n\left(n+1\right)\left(n+5\right)⋮3\)
Vậy \(n\left(n+1\right)\left(n+5\right)⋮3\forall n\in N\)
Ta có : 1/3 < 1/2
1/30 < 1/2
1/32 < 1/2
1/35 < 1/2
1/45 < 1/2
1/47 < 1/2
1/50 < 1/2
=> 1/3 + 1/30 + 1/32 + 1/35 + 1/45 + 1/47 + 1/50 < 1/2
@Ác Quỷ Bóng Tối
\(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)
\(\Rightarrow\)\(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{7}{14}\)
\(\Rightarrow\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{14}+\dfrac{1}{14}+\dfrac{1}{14}+\dfrac{1}{14}+\dfrac{1}{14}+\dfrac{1}{14}+\dfrac{1}{14}\)
Dù \(\dfrac{1}{3}>\dfrac{1}{14}\) nhưng:
\(\dfrac{1}{30}< \dfrac{1}{14}\)
\(\dfrac{1}{32}< \dfrac{1}{14}\)
\(\dfrac{1}{35}< \dfrac{1}{14}\)
\(\dfrac{1}{45}< \dfrac{1}{14}\)
\(\dfrac{1}{47}< \dfrac{1}{14}\)
\(\dfrac{1}{50}< \dfrac{1}{14}\)
\(\Rightarrow\) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)