K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

bn gi câu a) ; b) ra nha bn gi như thế này ít ai muốn lm

* \(36^3-25x=46656-25x=\left(216\right)^2-\left(5\sqrt{x}\right)^2\)

\(=\left(216-5\sqrt{x}\right)\left(216+5\sqrt{x}\right)\)

* \(x^2-8x+16-\left(x-4\right)\left(x-3\right)=x^2-8x+16-\left(x^2-3x-4x+12\right)\)

\(x^2-8x+16-x^2+3x+4x-12=4-x=\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)\)

1: \(6x^2y-9xy^2+3xy\)

\(=3xy\left(2x-3y+1\right)\)

2: \(\left(4-x\right)^2-16\)

\(=\left(4-x-4\right)\left(4-x+4\right)\)

\(=-x\cdot\left(8-x\right)\)

3: \(x^3+9x^2-4x-36\)

\(=x^2\left(x+9\right)-4\left(x+9\right)\)

\(=\left(x+9\right)\left(x-2\right)\left(x+2\right)\)

14 tháng 8 2021

1) \(6x^2y-9xy^2+3xy=3xy\left(2x-3y+1\right)\)

2) \(\left(4-x\right)^2-16=\left(4-x\right)^2-4^2=\left(4-x-4\right)\left(4-x+4\right)=-x\left(8-x\right)\)

3) \(x^3+9x^2-4x-36\\ =\left(x^3-2x^2\right)+\left(11x^2-22x\right)+\left(18x-36\right)\\ =x^2\left(x-2\right)+11x\left(x-2\right)+18\left(x-2\right)\\ =\left(x^2+11x+18\right)\left(x-2\right)\\ =\left[\left(x^2+2x\right)+\left(9x+18\right)\right]\left(x-2\right)\\ =\left[x\left(x+2\right)+9\left(x+2\right)\right]\left(x-2\right)\\ =\left(x+2\right)\left(x+9\right)\left(x-2\right)\)

AH
Akai Haruma
Giáo viên
21 tháng 8 2023

Lời giải:

a. 

$(xy)^2-xy-2=(x^2y^2+xy)-(2xy+2)$

$=xy(xy+1)-2(xy+1)=(xy+1)(xy-2)$

b. Bạn xem lại đoạn $-16x^2$ là dấu - hay + vậy?

=(x^2+8x)^2+23(x^2+8x)+135

Cái này ko phân tích được nha bạn

17 tháng 6 2023

\(\left(x^2+8x+8\right)\left(x^2+8x+15\right)+15\\ \Leftrightarrow\left(x^4+8x^3+15x^2+8x^3+64x^2+120x+8x^2+64x+120\right)+15\\ \Leftrightarrow x^4+16x^3+87x^2+184x+135\)

 

5 tháng 8 2018

1) \(\left(5x-4\right)\left(4x-5\right)+\left(5x-1\right)\left(x+4\right)+3\left(3x-2\right)\)

\(=20x^2-41x+20+\left(5x-1\right)\left(x+4\right)+3\left(3x-2\right)\)

\(=20x^2-41+20+5x^2+19x-4+3\left(3x-2\right)\)

\(=20x^2-41x+20+5x^2+19x-4+9x-4\)

\(=25x^2-13x+10\)

2) \(\left(5x-4\right)^2+\left(16-25x^2\right)+\left(5x+4\right)\left(3x+2\right)\)

\(=\left(5x-4\right)^2+16-25x^2+\left(5x-4\right)\left(3x+2\right)\)

\(=25x^2-40x+16^2-25x^2+\left(5x-4\right)\left(3x+2\right)\)

\(=25x^2-40x+16^2-25x^2+15x^2-2x-8\)

\(=15x^2-42x+24\)

10 tháng 11 2023

a: \(P=-3x^3+5x\)

\(=x\cdot\left(-3x^2\right)+x\cdot5\)

\(=x\left(-3x^2+5\right)\)

b: \(Q=\left(2x-1\right)+\left(x-2\right)\left(2x-1\right)\)

\(=\left(2x-1\right)\left(1+x-2\right)\)

\(=\left(2x-1\right)\left(x-1\right)\)

c: \(R=4-16x^2\)

\(=4\cdot1-4\cdot4x^2\)

\(=4\left(1-4x^2\right)\)

\(=4\left(1-2x\right)\left(1+2x\right)\)

d: \(S=36-4x^2\)

\(=4\cdot9-4\cdot x^2\)

\(=4\left(9-x^2\right)\)

\(=4\left(3-x\right)\left(3+x\right)\)

e: \(T=8x^3-1\)

\(=\left(2x\right)^3-1^3\)

\(=\left(2x-1\right)\left(4x^2+2x+1\right)\)

f: \(Q=8-x^3\)

\(=2^3-x^3\)

\(=\left(2-x\right)\left(4+2x+x^2\right)\)

g: \(N=64-x^3\)

\(=4^3-x^3\)

\(=\left(4-x\right)\left(16+4x+x^2\right)\)

22 tháng 8 2023

\(8x^3+36x^2y+54xy^2+27y^3\\ =\left(2x\right)^3+3.\left(2x\right)^2.3y+3.2x.\left(3y\right)^2+\left(3y\right)^3\\ =\left(2x+3y\right)^3\\ =\left(2x+3y\right)\left(2x+3y\right)\left(2x+3y\right)\)

\(\left(x-y\right)^3-\left(x+y\right)^3\\ =\left(x-y-x-y\right)\left(x^2-2xy+y^2+x^2-y^2+x^2+2xy+y^2\right)\\ =-2y\left(3x^2+y^2\right)\)

\(\left(x+1\right)^3+\left(x-1\right)^3\\ =\left(x+1+x-1\right)\left(x^2+2x+1-x^2+1+x^2-2x+1\right)\\ =2x\left(x^2+3\right)\)

\(\left(x-1\right)^2-\left(x+1\right)^2\\ =\left(x-1-x-1\right)\left(x-1+x+1\right)\\ =-2.2x=-4x\)

a: =(2x)^3+3*(2x)^2*3y+3*2x*(3y)^2+(3y)^3

=(2x+3y)^3

b: (x-y)^3-(x+y)^3

=(x-y-x-y)[(x-y)^2+(x-y)(x+y)+(x+y)^2]

=-2y*[x^2-2xy+y^2+x^2-y^2+x^2+2xy+y^2]

=-2y(3x^2+y^2)

c: (x+1)^3+(x-1)^3

=(x+1+x-1)[(x+1)^2-(x+1)(x-1)+(x-1)^2]

=2x*[x^2+2x+1-x^2+1+x^2-2x+1]

=2x(x^2+3)

d: =(x-1-x-1)(x-1+x+1)

=2x*(-2)=-4x

b mk thấy nó sai đề sao ý 

c) \(C=\left(x^2+x+4\right)^2+8x\left(x^2+x+4\right)+15x^2\)

\(=\left(x^2+x+4\right)^2+2.4x.\left(x^2+x+4\right)+16x^2-x^2\)

\(=\left(x^2+x+4+4x\right)^2-x^2\)

\(=\left(x^2+5x+4\right)^2-x^2\)

\(=\left(x^2+5x+4-x\right)\left(x^2+5x+4+x\right)=\left(x^2+4x+4\right)\left(x^2+6x+4\right)\)

10 tháng 7 2021

`(x+3)^4+(x+5)^4-2`

`={[(x+3)^2]^2-1^2}+{[(x+5)^2]^2 -1^2}`

`=[(x+3)^2-1^2][(x+3)^2+1]+[(x+5)^2-1^2][(x+5)^2+1]`

`=(x+3-1)(x+3+1)[(x+3)^2+1]+(x+5-1)(x+5+1)[(x+5)^2+1]`

`=(x+2)(x+4)[(x+3)^2+1]+(x+4)(x+6)[(x+5)^2+1]`

`=(x+4){(x+2)[(x+3)^2+1]+(x+6)[(x+5)^2+1]}`

`=(x+4)(2x^3+24x^2+108x+176)`

10 tháng 7 2021

Bạn gì ơi hình như phải ra \(2\left(t+4\right)^2\left(x^2+8x+22\right)\)chứ nhỉ???

2 tháng 8 2016

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+8x+2x+16\right)\left(x^2+6x+4x+24\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10+16+8\right)+16\)

\(=\left(x^2+10x+16\right)^2+2.\left(x^2+10x+16\right).4+4^2\)

\(=\left(x^2+10x+16+4\right)^2\)

\(=\left(x^2+10+20\right)^2\)

 

2 tháng 8 2016

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+16\)
\(=\left(x^2+8x+2x+16\right) \left(x^2+6x+4x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\left(1\right)\)
\(\text{Đặt }x^2+10x+\frac{16+24}{2}=t\)
\(\text{hay }x^2+10x+20=t\)
\(\left(1\right)\Rightarrow\left(t-4\right)\left(t+4\right)+16\)
\(=t^2-4^2+16\)
\(=t^2-16+16\)
\(=t^2\)
\(=\left(x^2+10x+20\right)^2\)