K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(x^3+3x^2-x-3=\left(x-2\right)\left(x^2+bx+c\right)+a\)

\(\Leftrightarrow x^3-2x^2+5x^2-10x+11x-22+19=\left(x-2\right)\left(x^2+bx+c\right)+a\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+5x+11\right)+19=\left(x-2\right)\left(x^2+bx+c\right)+a\)

=>b=5; c=11; c=19

2: \(4x^3+7x-6=\left(ax+b\right)\left(x^2+x+1\right)+c\)

\(\Leftrightarrow4x^3+4x^2+4x-4x^2-4x-4+7x-2=\left(ax+b\right)\left(x^2+x+1\right)+c\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(4x-4\right)+7x-2=\left(ax+b\right)\left(x^2+x+1\right)+c\)

=>a=4; b=-4; c=7x-2

3 tháng 9 2016

Ta có :

\(4x^3+7x^2+7x-6=\left(ax+b\right)\left(x^2+x+1\right)+c\)

\(\Leftrightarrow4x^3+7x^2+7x-6=ax^3+ax^2+ax+bx^2+bx+b+c\)

\(\Leftrightarrow4x^3+7x^2+7x-6=ax^3+\left(a+b\right)x^2+\left(a+b\right)x+\left(b+c\right)\)

( Phương pháp đồng nhất hệ số )

\(\Rightarrow\hept{\begin{cases}a=4\\a+b=7\\b+c=-6\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=4\\b=3\\c=-9\end{cases}}\)

Vậy ...

14 tháng 8 2019

làm mẫu 1 phần thôi men còn lại tự làm 

giải

a) 

  ax^3+ bx-24 x^2+4x+3 ax-4a ax^3+4ax^2+3ax - -4ax^2+(b-3a)x-24 -4ax^2-16ax-12a - (b-3a+16a)x-(24-12a)

Để \(A\left(x\right)⋮B\left(x\right)\)\(\Leftrightarrow\hept{\begin{cases}b-3a+16a=0\\24-12a=0\end{cases}}\)

                                    \(\Leftrightarrow\hept{\begin{cases}b+13.2=0\\a=2\end{cases}}\)

                                     \(\Leftrightarrow\hept{\begin{cases}b=-26\\a=2\end{cases}}\)

1 tháng 10 2019

â) viết lại biểu thức bên trái = (x2+5x-3)(x2-2x-4)+(14+a)x+b-12

Để là phép chia hết thì số dư =0

Số dư chính là (14+a)x+b-12=0 => a+14=0 và b-12=0 <=>a=-14 và b=12

b) làm tương tự phân tích vế trái thành (x3-2x2+4)(x2+9x+18)+(a+32)x2+(b-36)x

số dư là (a+32)x2+(b-36)x=0 =>a=-32 và b=36

c) Tương tự (x2-1)4x+(a+4)x+b

số dư là (a+4)x+b =2x-3 =>a+4=2 và b=-3 <=>a=-2 và b=-3