K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

b) Câu hỏi của Nguyễn Hoàng Thanh Trúc - Toán lớp 8 - Học toán với OnlineMath tham khảo

5 tháng 10 2017

1.=(x-2)(x 2+2x+7)+2(x-2)(x+2)-5(x-2) = 0
=>(x-2)(x 2+2x+7+2x+4-5) = 0
=>(x-2)(x 2+4x+6) = 0
Mà x 2+4x+6 (E Z)
=> x 2+4x+6 > 0
Vậy (x-2)=0 => x = 2
 

26 tháng 5 2017

Mk chỉ lm 1 bài còn lại cứ tương tự mà lm! Bn hx lớp 7 ak?

3) Ta có: x2 + 2x + 2 = (x2 + 2x +1 ) +1 = ( x+ 1)2 +1

Vì ( x+ 1)2 \(\ge\) 0 => ( x + 1)2 + 1 \(\ge\) 1 > 0 (đpcm)

26 tháng 5 2017

Mình giúp 2 bài cuối thôi,các bài trên bạn có thể tự giải và 1 bài @Mỹ Duyên đã giải rồi.

4.Ta có: \(x^2-x+1=x^2-2.x.\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\)\(\geq\) 0 \(\Rightarrow\) \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\) \(\geq\) \(\dfrac{3}{4}\) > 1 \(\forall\) x

5.Ta có: \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)

\(-\left(x-2\right)^2\) \(\leq\) 0 \(\Rightarrow\) \(-\left(x-2\right)^2-1\) \(\leq\) \(-1\) <0 \(\forall\) x

26 tháng 3 2020

Tớ làm cho bạn mà bạn toàn ko tick

26 tháng 3 2020

a)a2(a+1)+2a(a+1)=(a2+2a)(a+1)=a(a+2)(a+1)

Ta có Ta có a(a+1)(a+2) là 3 số tự nhiên liên tiếp =>a(a+1)(a+2)⋮3 (1)

Mà a(a+1)\(⋮\)2 (2)

Từ (1)(2) suy ra a(a+1)(a+2)⋮6

=>a2(a+1)+2a(a+1)⋮6

b)a(2a-3)-2a(a+1)=2a2-3a-2a2-2a=-5a

Vì -5 chia hết 5

=>-5a chia hết 5

c)x2+2x+2=x2+2x+1+1=(x+1)2+1

Vì (x+1)2≥0

<=>(x+1)2+1>0

d)x2-x+1=\(x^2-\frac{2.1}{2}\)+\(\frac{1}{4}+\frac{3}{4}\)=\(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)(đpcm)

e)-x2+4x-5=-(x2-4x+5)=-(x2-4x+4)-1=-(x-2)2-1

Vì -(x-2)2≤0=>-(x-2)2-1<0(đpcm)

rồi nhébanhbanhquahahaleuleu

a) Ta có: \(a^2\left(a+1\right)+2a\left(a+1\right)\)

\(=\left(a+1\right)\cdot\left(a^2+2a\right)\)

\(=a\cdot\left(a+1\right)\cdot\left(a+2\right)\)

Vì a và a+1 là hai số nguyên liên tiếp nên \(a\cdot\left(a+1\right)⋮2\)(1)

Vì a; a+1 và a+2 là ba số nguyên liên tiếp nên \(a\cdot\left(a+1\right)\cdot\left(a+2\right)⋮3\)(2)

mà 2 và 3 là hai số nguyên tố cùng nhau(3)

nên từ (1); (2) và (3) suy ra \(a\cdot\left(a+1\right)\cdot\left(a+2\right)⋮6\forall a\in Z\)

hay \(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\forall a\in Z\)(đpcm)

b) Ta có: \(a\left(2a-3\right)-2a\left(a+1\right)\)

\(=2a^2-3a-2a^2-2a\)

\(=-5a⋮5\forall a\in Z\)

hay \(a\left(2a-3\right)-2a\left(a+1\right)⋮5\forall a\in Z\)(đpcm)

c) Ta có: \(x^2+2x+2\)

\(=x^2+2x+1+1\)

\(=\left(x+1\right)^2+1\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\in Z\)

\(\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\in Z\)

hay \(x^2+2x+2>0\forall x\in Z\)(đpcm)

d) Ta có: \(x^2-x+1\)

\(=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\in Z\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\in Z\)

hay \(x^2-x+1>0\forall x\in Z\)(đpcm)

e) Ta có: \(-x^2+4x-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)\)

\(=-\left(x-2\right)^2-1\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\in Z\)

\(\Rightarrow-\left(x-2\right)^2\le0\forall x\in Z\)

\(\Rightarrow-\left(x-2\right)^2-1\le-1< 0\forall x\in Z\)

hay \(-x^2+4x-5< 0\forall x\in Z\)

7 tháng 11 2016

Ta phân tích các số ra bao quát hệ cơ số 10 :

abcd = a x 1000 + b x 100 + c x 10 + d 

 nếu ta thấy có thể gộp lại như sau :

abcd = cd x 290 thì chắc chắn là abcd chia hết cho 29 

Vậy a + 3b + 9c + 27d chắc chắn cũng chia hết cho 29 

b ) Tương tự cách lí luận câu a