Phân tích:
a, \(a^3-8b^3-a+2b\)
b, \(4x^2y^2-\left(x^2+y^2-z^2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\left(a-2b\right)\left(a^2+2ab+4b^2\right)-\left(a-2b\right)\)
\(=\left(a-2b\right)\left(a^2+2ab+4b^2-1\right)\)
b: Sửa đề: \(4x^2y^2-\left(x^2+y^2-z^2\right)^2\)
\(=\left(2xy-x^2-y^2+z^2\right)\left(2xy+x^2+y^2-z^2\right)\)
\(=\left[z^2-\left(x-y\right)^2\right]\left[\left(x+y\right)^2-z^2\right]\)
\(=\left(z-x+y\right)\left(z+x-y\right)\left(x+y+z\right)\left(x+y-z\right)\)
Bài 1)
Đưa về đồng bậc:
\(\left\{{}\begin{matrix}4x^3-y^3=x+2y\\52x^2-82xy+21y^2=-9\end{matrix}\right.\Rightarrow-9\left(4x^3-y^3\right)=\left(x+2y\right)\left(52x^2-82xy+21y^2\right)\)
\(\Leftrightarrow 8x^3+2x^2y-13xy^2+3y^3=0\)
\(\Leftrightarrow (4x-y)(x-y)(2x+3y)\Rightarrow \) \(\left[{}\begin{matrix}x=y\\4x=y\\2x=-3y\end{matrix}\right.\)
Thay từng TH vào hệ phương trình ban đầu ta thấy chỉ TH \(x=y\) thỏa mãn.
\(\Leftrightarrow (x,y)=(1,1),(-1,-1)\)là nghiệm của HPT
Bài 2)
Đặt \(P=a+b+c+\frac{3}{4a}+\frac{9}{8b}+\frac{1}{c}\Rightarrow 4P=4a+4b+4c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
\(\Leftrightarrow 4P=(a+2b+3c)+\left(3a+\frac{3}{a}\right)+\left(2b+\frac{9}{2b}\right)+\left(c+\frac{4}{c}\right)\)
Áp dụng bất đẳng thức AM-GM:
\(\left\{{}\begin{matrix}3a+\dfrac{3}{a}\ge6\\2b+\dfrac{9}{2b}\ge6\\c+\dfrac{4}{c}\ge4\end{matrix}\right.\)\(\Rightarrow 4P\geq (a+2b+3c)+6+6+4\geq 10+6+6+4=26\)
\(\Leftrightarrow P\geq \frac{13}{2}\) (đpcm)
Dấu bằng xảy ra khi \((a,b,c)=(1,\frac{3}{2},2)\)
a) x2 + 4x + 3 - y2 -2y
= x2 +4x + 4 - y2 -2y-1
= (x+2)2 - (y+1)2
= (x+2-y-1).(x+2+y+1)
= (x-y+1).(x+y+3)
b) 2a2 -5ab + 2b2
= 2a2 -4ab + 2b2 - ab
= 2.(a2 - 2ab+b2) - ab
= 2.(a-b)2 -ab
...
c) (x+y)2 - 2x - 2y + 1
= (x+y)2 - 1 - 2x -2y +2
= (x+y-1).(x+y+1) - 2.(x+y-1)
= (x+y-1)2
a)\(\left(4x^3-xy^2+y^3\right)\left(x^2y+2xy^2-2y^3\right)\)
\(=x^2y\left(4x^3-xy^2+y^3\right)+2xy^2\left(4x^3-xy^2+y^3\right)\)
\(-2y^3\left(4x^3-xy^2+y^3\right)\)
\(=4x^5y-x^3y^3+x^2y^4+8x^4y^2-2x^2y^4+2xy^5\)
\(-8x^3y^3+2xy^5-2y^6\)
\(=-2y^6+4x^5y+\left(2xy^5+2xy^5\right)+8x^4y^2+\left(x^2y^4-2x^2y^4\right)\)
\(-\left(x^3y^3+8x^3y^3\right)\)
\(=-2y^6+4x^5y+4xy^5+8x^4y^2-x^2y^4-9x^3y^3\)
b)
(!) \(2\left(x+y\right)^2-7\left(x+y\right)+5\)
\(=2\left(x+y\right)^2-2\left(x+y\right)-5\left(x+y\right)+5\)
\(=2\left(x+y\right)\left(x+y-1\right)-5\left(x+y-1\right)\)
\(=\left(2x+2y-5\right)\left(x+y-1\right)\)
(!!) \(\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(=\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-x^2-y^2-z^2\)
\(=2\left(xy+yz+zx\right)\)
a: \(=\left(a-2b\right)\left(a^2+2ab+4b^2\right)-\left(a-2b\right)\)
\(=\left(a-2b\right)\left(a^2+2ab+4b^2-1\right)\)
b: Sửa đề: \(4x^2y^2-\left(x^2+y^2-z^2\right)^2\)
\(=\left(2xy-x^2-y^2+z^2\right)\left(2xy+x^2+y^2-z^2\right)\)
\(=\left[z^2-\left(x-y\right)^2\right]\left[\left(x+y\right)^2-z^2\right]\)
\(=\left(z-x+y\right)\left(z+x-y\right)\left(x+y-z\right)\left(x+y+z\right)\)