1)Tìm x,y,z biết
x/3=y/25 và x+y+z=180,z=4x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4x-2=x\)
\(4x-x=2\)
\(3x=2\)
\(x=\dfrac{2}{3}\)
b) Thay \(x=1,y=3\) ta có \(3=a.1\Rightarrow a=3\)
Vậy hàm số cần tìm là \(y=3x\)
c) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{x+y+z}{1+2+3}=\dfrac{180}{6}=30\)
\(\Rightarrow\left\{{}\begin{matrix}x=30\times1=30\\y=30\times2=60\\z=30\times3=90\end{matrix}\right.\)
x/2 = y/3 = z/6 = 180
=> x = 180 : 2 = 90
y = 180 : 3 = 60
z = 180 : 6 = 30
~~~ HT ~~~
1) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y+z}{8-12+15}=\dfrac{10}{11}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{10}{11}\\\dfrac{y}{12}=\dfrac{10}{11}\\\dfrac{z}{15}=\dfrac{10}{11}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{80}{11}\\y=\dfrac{120}{11}\\z=\dfrac{150}{11}\end{matrix}\right.\)
2) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\) \(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{136}{62}=\dfrac{68}{31}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{68}{31}\\\dfrac{y}{20}=\dfrac{68}{31}\\\dfrac{z}{28}=\dfrac{68}{31}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1020}{31}\\y=\dfrac{1360}{31}\\z=\dfrac{1904}{31}\end{matrix}\right.\)
3) \(\Rightarrow\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}\)
Áp dụng t/c dtsbn:
\(\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}=\dfrac{3x+5y-7z-9-25-21}{15+5-49}=-\dfrac{45}{29}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-9}{15}=-\dfrac{45}{29}\\\dfrac{5y-25}{5}=-\dfrac{45}{29}\\\dfrac{7z+21}{49}=-\dfrac{45}{29}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{138}{29}\\y=\dfrac{100}{29}\\z=-\dfrac{402}{29}\end{matrix}\right.\)
Theo đề bài, ta có:
\(\frac{x}{1}=\frac{y}{4};3z=4y\) (-) \(\frac{z}{4}=\frac{y}{3}\)
Vậy ta có: \(\frac{x}{3}=\frac{y}{12}=\frac{z}{16}\)
(=) \(\frac{4x}{12}=\frac{y}{12}=\frac{z}{16}\)
Áp dụng t/c của dãy tỉ số = nhau, ta có:
\(\frac{4x}{12}+\frac{y}{12}+\frac{z}{16}=\frac{4x+y+z}{12+12+16}=\frac{8}{40}=0,2\)
=> x=0,2.3= 0,6
y=0,2.12= 2,4
z= 0,2.16= 3,2
Vậy x=0,6
y=2,4
z=3,2
<333
bài 2 :
ta có x:y:z=3:5:(-2)
=>x/3=y/5=z/-2
=>5x/15=y/5=3z/-6
áp dụng tc dãy ... ta có :
5x/15=y/5=3z/-6=5x-y+3z/15-5+(-6)=-16/4=-4
=>x/3=-=>x=-12
=>y/5=-4=>y=-20
=>z/-2=-4=>z=8
Theo đề được:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}\) và x.y.z=180
=> \(\left(\frac{x}{\frac{1}{2}}\right)^3=\left(\frac{y}{\frac{1}{3}}\right)^3=\left(\frac{z}{\frac{1}{4}}\right)^3=\frac{x.y.z}{\frac{1}{2}.\frac{1}{3}.\frac{1}{4}}=\frac{180}{\frac{1}{24}}=4320\)
Vậy \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{4}}=\sqrt[3]{4320}\)
=> Không tìm được x,y,z
Ta có: x+y+z =180
<=>5x+y=180
Ta lại có \(\dfrac{x}{3}=\dfrac{5x}{15}=\dfrac{y}{25}\)
Áp dụng dãy tỉ số bằng nhau:
k=\(\dfrac{x}{3}=\dfrac{5x}{15}=\dfrac{y}{25}\)=\(\dfrac{5x+y}{15+25}=\dfrac{180}{40}=\dfrac{9}{2}\)
=>k=\(\dfrac{9}{2}\)
Do đó: \(\dfrac{x}{3}=\dfrac{9}{2}=>x=\dfrac{27}{2}\)
\(\dfrac{y}{25}=\dfrac{9}{2}=>y=\dfrac{225}{2}\)
z=4x=4*\(\dfrac{27}{2}=54\)
\(z=4x\)
\(\Rightarrow x+y+z=x+4x+y=180\)
\(\Rightarrow5x+y=180\)
\(\dfrac{x}{3}=\dfrac{y}{25}\Rightarrow25x=3y\Rightarrow y=\dfrac{25}{3}x\)
\(\Rightarrow5x+\dfrac{25}{3}x=180\)
\(\Rightarrow\dfrac{40}{3}x=180\)
\(\Rightarrow x=180:\dfrac{40}{3}=\dfrac{27}{2}\)
\(\Rightarrow y=\dfrac{27}{2}:3.25=\dfrac{225}{2}\)
\(\Rightarrow z=\dfrac{27}{2}.4=54\)