giải bất phương trình :
\(|x-3|\) > x - 6
Help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2+x-6}{x-4}>0\) <=> \(\frac{\left(x^2-4\right)+\left(x-2\right)}{x-4}>0\) <=> \(\frac{\left(x-2\right)\left(x+2\right)+\left(x-2\right)}{x-4}>0\)
<=> \(\frac{\left(x-2\right)\left(x+3\right)}{x-4}>0\). Có các TH:
+/ TH1: \(\hept{\begin{cases}\left(x-2\right)\left(x+3\right)>0\\x-4>0\end{cases}}< =>\orbr{\begin{cases}x< -3\\x>4\end{cases}}\)(1)
+/ TH2: \(\hept{\begin{cases}\left(x-2\right)\left(x+3\right)< 0\\x-4< 0\end{cases}}< =>-3< x< 2\) (2)
Từ (1) và (2) => Nghiệm của PT là: x<2; x khác 3 và x>4
Để \(\frac{x^2+x-6}{x-4}>0\)thì
\(x^2+x-6>0\)và \(x-4>0\)Với điều kiện \(x\ne4\)
Thứ 1
Để \(x^2+x-6>0\)
Thì \(x^2+x>6\)
Mà \(x^2\ge0\)và \(x^2>x\)
Suy ra \(x^2+x\ge0\)
Suy ra \(x>2\)và \(x\ge-2\)
Thứ 2
\(x-4>0\)
Suy ra \(x>4\)
Vậy x phải thỏa mãn điều kiện sau
\(x\ge-2\)
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Mình làm bừa thôi :>
\(\left|2x-1\right|\ge x-1\)
\(\Leftrightarrow\left|2x-1\right|-x\ge1\)
\(\Leftrightarrow\hept{\begin{cases}2x-1-x\ge-1\\-\left(2x-1\right)-x\ge-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-1\ge0\\2x-1< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge0\\x\le\frac{2}{3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x< \frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\in\left\{\frac{1}{2};+\infty\right\}\\x\in\left\{-\infty;\frac{1}{2}\right\}\end{cases}}\)
\(\Leftrightarrow x\inℝ\)
Chị ơi phần a giải 2 theo 2TH. TH1 là 3 đều lớn hơn 0 và TH2 là 2 âm 1 dương
Phần b giải 3 TH: TH1 cả 3 nhỏ hơn 0
TH2 :2 dương 1 âm
TH3 : 1 âm 2 dương
\(\Leftrightarrow x\left(\frac{1}{x-3}-\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-6}\right)=0\)
\(\Leftrightarrow x\left(\frac{1}{x-3}-\frac{1}{x-5}-\frac{1}{x-4}+\frac{1}{x-6}\right)=0\)
\(\Leftrightarrow x\left[\frac{x-6+x-3}{\left(x-3\right)\left(x-6\right)}-\left(\frac{x-4+x-5}{\left(x-5\right)\left(x-4\right)}\right)\right]=0\)
\(\Leftrightarrow x\left(\frac{2x-9}{x^2-9x+18}-\frac{2x-9}{x^2-9x+20}\right)=0\)
\(\Leftrightarrow x\left(2x-9\right)\left(\frac{1}{x^2-9x+18}-\frac{1}{x^2-9x+20}\right)=0\) Vì \(\frac{1}{x^2-9x+18}-\frac{1}{x^2-9x+20}\ne0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x-9=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{9}{2}\end{cases}}\)
#Hok tốt
\(\left(x-2\right)^2=x\left(x-3\right)\)
\(\Leftrightarrow x^2-4x+4-x^2+3x=0\)
\(\Leftrightarrow-x+4=0\)
\(\Leftrightarrow x=4\)
\(S=\left\{4\right\}\)
\(\left(x-2\right)^2=x\left(x-3\right)\\ \Leftrightarrow\left(x-2\right)^2-x\left(x-3\right)=0\\ \Leftrightarrow x^2-4x+4-\left(x^2-3x\right)=0\\ \Leftrightarrow x^2-4x+4-x^2+3x=0\\ \Leftrightarrow-x=-4\\ \Leftrightarrow x=4\)
`|5x| = - 3x + 2`
Nếu `5x>=0<=> x>=0` thì phương trình trên trở thành :
`5x =-3x+2`
`<=> 5x +3x=2`
`<=> 8x=2`
`<=> x= 2/8=1/4` ( thỏa mãn )
Nếu `5x<0<=>x<0` thì phương trình trên trở thành :
`-5x = -3x+2`
`<=>-5x+3x=2`
`<=> 2x=2`
`<=>x=1` ( không thỏa mãn )
Vậy pt đã cho có nghiệm `x=1/4`
__
`6x-2<5x+3`
`<=> 6x-5x<3+2`
`<=>x<5`
Vậy bpt đã cho có tập nghiệm `x<5`
ĐKXĐ: \(x\in R\)
\(3x^2-5x+6=2x\cdot\sqrt{x^2-x+2}\)
=>\(3x^2-6x+x-2+8=2\cdot\sqrt{x^4-x^3+2x^2}\)
=>\(\left(x-2\right)\left(3x+1\right)=2\cdot\left(\sqrt{x^4-x^3+2x^2}-4\right)\)
\(\Leftrightarrow\left(x-2\right)\left(3x+1\right)=2\cdot\dfrac{x^4-x^3+2x^2-16}{\sqrt{x^4-x^3+2x^2}+4}\)
=>\(\left(x-2\right)\left(3x+1\right)=2\cdot\dfrac{x^4-2x^3+x^3-2x^2+4x^2-8x+8x-16}{\sqrt{x^4-x^3+2x^2}+4}\)
=>\(\left(x-2\right)\left(3x+1\right)=\dfrac{2\left(x-2\right)\left(x^3+x^2+4x+8\right)}{\sqrt{x^4-x^3+2x^2}+4}\)
=>\(\left(x-2\right)\left[\left(3x+1\right)-\dfrac{2\left(x^3+x^2+4x+8\right)}{\sqrt{x^4-x^3+2x^2}+4}\right]=0\)
=>x-2=0
=>x=2(nhận)
\(3x^2-5x+6=2x\sqrt{x^2-x+2}\)
\(\Leftrightarrow\left[x^2-2x\sqrt{x^2-x+2}+\left(x^2-x+2\right)\right]+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{x^2-x+2}\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{x^2-x+2}\\x-2=0\end{matrix}\right.\Leftrightarrow x=2\)
Thử lại ta thấy nghiệm \(x=2\) thỏa phương trình ban đầu.
|x-3| >x-6
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3\ge0\\x-3>x-6\end{matrix}\right.\\\left\{{}\begin{matrix}x-3< 0\\-x+3>x-6\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge3\\-3>6\end{matrix}\right.\\\left\{{}\begin{matrix}x< 3\\2x< 9\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge3\\x< 3\end{matrix}\right.\)\(\Rightarrow dung\forall x\)