K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

Anh chỉ gợi ý về hướng giải thôi. Em vẽ hình rồi c/m nhé

1. Chứng minh bằng cách so sánh tổng hai đường chéo và hai cạnh đối trong hình bình NAMC với N là trung điểm AB

2. Có 2 góc so le trong đó tự giải nhé

10 tháng 10 2016

 Bài 1 :

a. AB//CD  (ABCD là hình bình hành)                                                                                                                                              M thuộc AB                                                                                                                                                                                  N thuộc CD                                                                                                                                                                              => BM // DN

Xét tứ giác AMCN có:

MB=DN (gt) 

BM// DN

=> tứ giác AMCN là hình bình hành

b. Gọi giao điểm của AC và BD là O

=> O là trung điểm của AC và BD (tính chất hình bình hành) 

 Hình bình hành MBND có

O là trung điểm của BD

MN là đường chéo hình bình hành MBND

O là trung điểm MM

=> MN đi qua O

=> AC,BD,MN đồng quy tại một điểm

c.

10 tháng 10 2016

Bài 2 :

a. AB = CD (ABCD là hình bình hành) 

Mà AB = BE (A đối xứng E qua B) 

=> CD=BE 

AB // CD (ABCD là hình bình hành) 

Mà E thuộc AC

=> CD//BE 

Xét tứ giác DBEC:

CD=BE (CM) 

CD//BE (CM) 

=> DBEC là hình bình hành

b.

8 tháng 8 2021

Do E là điểm bất kì trên AB, mà E đối xứng với F qua O => F nằm trên DC⇒ D,F,C thẳng hàng

2 tháng 12 2016

Do E là điểm bất kì trên AB, mà E đx vs F qua O => F nằm trên DC =>D,F,C thẳng hàng

26 tháng 12 2023

a: ta có:ABCD là hình bình hành

=>AB//CD và AB=CD

Ta có: AB//CD

C\(\in\)DE

Do đó: AB//CE

Ta có: AB=CD

CD=CE

Do đó: AB=CE

Xét tứ giác ABEC có

AB//EC

AB=EC

Do đó: ABEC là hình bình hành

b: Ta có: ABCD là hình chữ nhật

=>AC=BD và AC cắt BD tại trung điểm của mỗi đường

=>M là trung điểm chung của BD và AC

Ta có: BD=AC

AC=BE(ABEC là hình bình hành)

Do đó: BD=BE

=>\(\widehat{BDE}=\widehat{BED}\)

Xét ΔBDE có

M,N lần lượt là trung điểm của BD,BE

=>MN là đường trung bình của ΔBDE

=>MN//DE và MN=1/2DE

Xét tứ giác DMNE có MN//DE

nên DMNE là hình thang

Hình thang DMNE có \(\widehat{MDE}=\widehat{NED}\)

nên DMNE là hình thang cân

c: Ta có: MN//DE

BC\(\perp\)DE tại C

Do đó:BC\(\perp\)MN

Xét ΔBDE có

C,M lần lượt là trung điểm của DE,DB

=>CM là đường trung bình của ΔBDE

=>CM//BE và CM=BE/2

Ta có: CM//BE

N\(\in\)BE

Do đó: CM//BN

Ta có: CM=BE/2

BN=BE/2

Do đó: CM=BN

Xét tứ giác BMCN có

CM//BN

CM=BN

Do đó: BMCN là hình bình hành

Hình bình hành BMCN có BC\(\perp\)MN

nên BMCN là hình thoi

d: F đối xứng E qua B

=>B là trung điểmcủa FE

Xét ΔFDE có

DB là đường trung tuyến

DB=FE/2

Do đó: ΔFDE vuông tại D

=>FD\(\perp\)DE

mà AD\(\perp\)DE

và FD,AD có điểm chung là D

nên F,A,D thẳng hàng

Xét ΔFDE có

B là trung điểm của FE

BA//DE

Do đó: A là trung điểm của FD

Ta có: BA\(\perp\)FD tại A

A là trung điểm của FD

Do đó: BA là đường trung trực của FD

=>F đối xứng D qua AB

21 tháng 11 2021

Đáp án: Giải thích các bước giải a) Hình bình hành ABCD gọi OO là giao điểm của AC và BD ⇒O⇒O là trung điểm của AC, BD (tính chất ) Xét hai tam giác vuông ΔOEBΔOEB và OFDOFD có: OB=ODOB=OD ˆBOE=ˆDOFBOE^=DOF^ (đối đỉnh) ⇒ΔOEB=ΔOFD⇒ΔOEB=ΔOFD (cạnh huyền-góc nhọn) ⇒BE=DF⇒BE=DF (hai cạnh tương ứng) Và có BE//DFBE//DF (vì cùng vuông góc với AC giả thiết) Từ hai điều trên ⇒⇒ tứ giác BEDF là hình bình hành (dấu hiệu nhận biết) b) Xét ΔHBCΔHBC và ΔKDCΔKDC có: ˆBHC=ˆDKC=90oBHC^=DKC^=90o (giả thiết) ˆHBC=ˆKDCHBC^=KDC^ (=ˆBAD=BAD^ đồng vị) ⇒ΔHBC∼ΔKDC⇒ΔHBC∼ΔKDC (g.g) ⇒CHCK=CBCD⇒CHCK=CBCD (hai cạnh tương ứng tỉ lệ) ⇒CH.CD=CK.CB⇒CH.CD=CK.CB (đpcm) c) Xét ΔAEBΔAEB và ΔAHCΔAHC có: ˆAA^ chung ˆAEB=ˆAHC=90oAEB^=AHC^=90o ⇒ΔAEB∼ΔAHC⇒ΔAEB∼ΔAHC (g.g) ⇒AEAH=ABAC⇒AEAH=ABAC (hai cạnh tương ứng tỉ lệ) ⇒AE.AC=AB.AH⇒AE.AC=AB.AH (1) Xét ΔAFDΔAFD và ΔAKCΔAKC có: ˆAA^ chung ˆAFD=ˆAKC=90oAFD^=AKC^=90o ⇒ΔAFD=ΔAKC⇒ΔAFD=ΔAKC (g.g) ⇒AFAK=ADAC⇒AFAK=ADAC (hai cạnh tương ứng bằng nhau) ⇒AF.AC=AK.AD⇒AF.AC=AK.AD (2) Ta có OE=OF (suy ra từ ΔOEB=ΔOFDΔOEB=ΔOFD câu a) OA=OC (tính chất hình bình hành) ⇒OA−OE=OC−OF⇒OA−OE=OC−OF hay AE=FCAE=FC (3) Từ (1), (2) và (3) suy ra AB.AH+AK.AD=AE.AC+AF.ACAB.AH+AK.AD=AE.AC+AF.AC =AC(AE+AF)=AC(FC+AF)=AC2=AC(AE+AF)=AC(FC+AF)=AC2 (đpcm)

21 tháng 11 2021

viết code hả bạn??? đọc lòi mắt

Câu 1: Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.a, Chứng minh tứ giác AECF là hình bình hành.b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.c, Chứng minh tứ giác CIDB là hình thang cân.Câu 2: Cho hình bình hành ABCD . Gọi I,K theo thứ tự là trung điểm của  CD, AB. Đường chéo BD...
Đọc tiếp

Câu 1: Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.

a, Chứng minh tứ giác AECF là hình bình hành.

b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.

c, Chứng minh tứ giác CIDB là hình thang cân.

Câu 2: Cho hình bình hành ABCD . Gọi I,K theo thứ tự là trung điểm của  CD, AB. Đường chéo BD cắt AI, CK theo thứ tự tại MN. Chứng minh rằng:

a) Tứ giác AKCI là hình bình hành.

b) DM = MN = NB.

c) Các đoạn thẳng AC, BD, IK cùng đi qua một điểm.  

Câu 3: Cho tam giác ABC vuông tại A, trung tuyến AD. Vẽ từ D các đường thẳng song song với AB và AC, chúng cắt cạnh AC, AB lần lượt tại F và F.

a, Tứ giác AEDF là hình gì? Vì sao?

b, Chứng minh: A đối xứng với C qua F.

c,Cho AB = 6cm, AC = 8cm, tính độ dài đường chéo EF của tứ giác AEDF.

0