Tìm nghiệm của các đa thức sau:
a,x^2-3
b,x^2+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(R\left(x\right)=x^2+3x\)
a) Ta có:
\(R\left(x\right)=x^2+3x\)
\(R\left(x\right)=x\left(x+3\right)\)
\(R\left(x\right)=x\left(x+3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+3=0\Rightarrow x=-3\end{matrix}\right.\)
Vậy: Trong các số -1, -2 và -3 thì nghiệm của đa thức là -3
b) Các nghiệm của R(x) là 0 và -3 (ở phần a)
a) Cho đa thức : \(x^2-5x+4=0\)
\(=>\left(x^2-x\right)-\left(4x-4\right)=0\\ =>x\left(x-1\right)-4\left(x-1\right)=0\\ =>\left(x-1\right)\left(x-4\right)=0\\ =>\left[{}\begin{matrix}x-1=0\\x-4=0\end{matrix}\right.\\ =>\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
Vậy nghiệm đa thức trên là : `x=1` hoặc `x=4`
b) Ta thấy : \(x^2+x+3=\left(x^2+\dfrac{1}{2}x\right)+\left(\dfrac{1}{2}x+\dfrac{1}{4}\right)+\dfrac{11}{4}\\ =x\left(x+\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{11}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\forall x\in R\)
Vậy đa thức trên vô nghiệm
b.
Đặt \(f\left(x\right)=x^2-5x+51=x^2-5x+\dfrac{25}{4}+\dfrac{37}{2}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\)
Do \(\left(x-\dfrac{5}{2}\right)^2\ge0;\forall x\Rightarrow\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\ge\dfrac{37}{2}\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(f\left(x\right)\) không có nghiệm
c.
Đặt \(g\left(x\right)=-x^2-6x-45=-\left(x^2+6x+9\right)-36=-\left(x+3\right)^2-36\)
Do \(-\left(x+3\right)^2\le0;\forall x\Rightarrow-\left(x+3\right)^2-36\le-36\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(g\left(x\right)\) không có nghiệm
d.
Đặt \(h\left(x\right)=x^2-4x+26=\left(x^2-4x+4\right)+22=\left(x-2\right)^2+22\)
Do \(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2+22\ge22\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(h\left(x\right)\) không có nghiệm
4.
d. \(x^3-19x^2=0\)
\(\Leftrightarrow x^2\left(x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x-19=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=19\end{matrix}\right.\)
Vậy đa thức có 2 nghiệm là \(x=0;x=19\)
a: A(x)=2x^3+x^2+4x+1
B(x)=-2x^3+x^2+3x+2
b: M(x)=A(x)+B(x)
=2x^3+x^2+4x+1-2x^3+x^2+3x+2
=2x^2+7x+3
c: M(x)=0
=>2x^2+7x+3=0
=>2x^2+6x+x+3=0
=>(x+3)(2x+1)=0
=>x=-3 hoặc x=-1/2
a: A(x)=0
=>5x-7=0
=>x=7/5
b: P(x)=0
=>x-1=0 hoặc x+3=0
=>x=1 hoặc x=-3
c: Q(x)=0
=>(2/3x-1)=0 hoặc x+3/5=0
=>x=-3/5 hoặc x=3/2
a) x2 - 3 = 0
=> x2 = 3
=> x = \(\sqrt{3}\)
Vậy đa thức a có 1 nghiệm x = \(\sqrt{3}\)
b) x2 + 2 = 0
Ta có: x2 >= 0 với mọi x
=> x2 + 2 >= 2 với mọi x
Vậy đa thức b vô nghiệm
\(x^2-3=0\)
\(\Rightarrow x^2=3\)
\(x=\pm\sqrt{3}\)
\(x^2+2=0\)
\(x^2=-2\)
\(x\in\varnothing\)