Tìm giá trị lớn nhất của b.thức sau:
\(E=-4x^2+4x-3\)
F=\(13-2x^2+4y+4xy-3y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D= 5x^2+8xy+5y^2-2x+2y
=4x^2+8xy+4y^2-2x+2y+y^2+x^2
=(2x+2y)^2+x^2-2*1/2x+1/4+y^2+2*1/2y+1/4-1/2
(2x+2y)^2+(x-1/2)^2+(y+1/2)^2-1/2>=-1/2
suy ra D>=-1/2 nên D có GTNN là -1/2
Ta có : 5D = 25x2 + 40xy + 25y2 - 10x + 10y
5D = (5x+ 4y - 1)2 + 9y2 + 18y - 1
5D = ( 5x + 4y - 1)2 + 9 (y + 1)2 - 2
D =\(\frac{1}{5}\). ( 5x + 4y - 1)2 + \(\frac{9}{5}\).( y + 1)2 - \(\frac{2}{5}\) \(\ge\)\(\frac{-2}{5}\)
Dấu "=" xảy ra khi y+1 = 0 \(\Leftrightarrow\)y = -1
5x + 4y - 1 = 0 \(\Leftrightarrow\)x=1
Vậy GTNN của D = \(\frac{-2}{5}\)khi x = 1 ; y = -1
\(A=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4\)
\(minA=4\Leftrightarrow x=2\)
\(B=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2\)
\(minB=2\Leftrightarrow x=\dfrac{3}{2}\)
\(C=3\left(x^2+2x+1\right)-8=3\left(x+1\right)^2-8\ge-8\)
\(minC=-8\Leftrightarrow x=-1\)
\(D=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4\le-4\)
\(maxD=-4\Leftrightarrow x=1\)
\(E=-\left(4x^2-6x+\dfrac{9}{4}\right)-\dfrac{11}{4}=-\left(2x-\dfrac{3}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\)
\(maxA=-\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{4}\)
\(F=-2\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{55}{8}=-2\left(x-\dfrac{1}{4}\right)^2-\dfrac{55}{8}\le-\dfrac{55}{8}\)
\(maxF=-\dfrac{55}{8}\Leftrightarrow x=\dfrac{1}{4}\)
\(G=\left(x^2-4xy+4y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-2y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(maxG=\dfrac{3}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-\dfrac{1}{2}\end{matrix}\right.\)
\(H=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)+16=-\left(x-1\right)^2-\left(y+2\right)^2+16\le16\)
\(maxH=16\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(A=-2x^2+4xy-2y^2+4\left(x-y\right)-2-8y^2+8y+2019\\ A=\left[-2\left(x-y\right)^2+4\left(x-y\right)-2\right]-8\left(y^2-y+\dfrac{1}{4}\right)+2020\\ A=-2\left(x-y-1\right)^2-8\left(y-\dfrac{1}{2}\right)^2+2020\le2020\\ A_{max}=2020\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1+\dfrac{1}{2}=\dfrac{3}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)
a: Ta có: \(x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
b: Ta có: \(-x^2+x+2\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(A=-2x^2-10y+4xy+4x+4y+2013\)
\(A=-\left(2x^2+10y^2-4xy-4x-4y-2013\right)\)
\(A=-\left(x^2+x^2+y^2+9y^2+2xy-6xy-4x-4y-2013\right)\)
\(A=-\left[\left(x^2+2xy+y^2\right)-4\left(x+y\right)+4+\left(3y\right)^2-2\cdot3y\cdot x+x^2-2017\right]\)
\(A=-\left[\left(x+y\right)^2-2\cdot\left(x+y\right)\cdot2+2^2+\left(3y-x\right)^2-2017\right]\)
\(A=-\left[\left(x+y\right)^2+\left(3y-x\right)^2-2017\right]\)
\(A=2017-\left(x+y\right)^2-\left(3y-x\right)^2\)
\(A=2017-\left[\left(x+y\right)^2-\left(3y-x\right)^2\right]\le2017\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\3y-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\3y=x\end{cases}}\Leftrightarrow\hept{\begin{cases}3y+y=0\\x+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=0\end{cases}}}\)
\(A=-2x^2-10y^2+4xy+4x+4y+2013\)
\(=-2\left(x-y\right)^2+4\left(x-y\right)-2-8y^2+8y-2+2017\)
\(=-2\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]-8\left(y^2-y+\frac{1}{4}\right)+2017\)
\(=-2\left(x-y-1\right)^2-8\left(y-\frac{1}{2}\right)^2+2017\le2017\forall x;y\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-y-1=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}}\)
Vậy GTLN của A là 2017 khi \(x=\frac{3}{2}\)và \(y=\frac{1}{2}\)
Chúc bạn học tốt.
a, \(E=-4x^2+4x-3\)
\(=-\left(4x^2+4x+1-4\right)\)
\(=-\left[\left(2x+1\right)^2-4\right]=-\left(2x+1\right)^2+4\le4\)
Dấu " = " khi \(-\left(2x+1\right)^2=0\Leftrightarrow x=\dfrac{-1}{2}\)
Vậy \(MAX_E=4\) khi \(x=\dfrac{-1}{2}\)
b, \(F=13-2x^2+4y+4xy-3y^2\)
\(=17-\left(2x^2-4xy+2y^2\right)-\left(y^2-4y+4\right)\)
\(=17-2\left(x-y\right)^2-\left(y-2\right)^2\le17\)
Dấu " = " khi \(\left\{{}\begin{matrix}2\left(x-y\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=2\end{matrix}\right.\Leftrightarrow x=y=2\)
Vậy \(MAX_F=17\) khi x = y = 2