K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2016

tach 14-x = 10-4-x roi sau do chac ban cung phai tu biet lam

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

11 tháng 7 2023

a) \(A=\dfrac{3}{x-1}\)

Điều kiện \(|x-1|\ge0\)

\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)

\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)

b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)

 

2 tháng 3 2022

Tham khảo:

undefined

CHÚC EM HỌC TỐT NHÁoaoa

6 tháng 11 2016

bài 2

Ta có:

\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)

Trường hợp 1: \(x-102>0\Rightarrow x>102\)

\(2-x>0\Rightarrow x< 2\)

\(\Rightarrow102< x< 2\left(loại\right)\)

Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)

\(2-x< 0\Rightarrow x>2\)

\(\Rightarrow2< x< 102\left(nhận\right)\)

Vậy GTNN của A là -100 đạt được khi 2<x<102.

6 tháng 11 2016

trị tuyệt đối phải bằng dương chứ sao bằng âm được

19 tháng 12 2023

a:

ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne4\end{matrix}\right.\)

 \(A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-2}+\dfrac{\sqrt{a}}{\sqrt{a}+2}\right)\cdot\dfrac{a-4}{\sqrt{4a}}\)

\(=\dfrac{\sqrt{a}\left(\sqrt{a}+2\right)+\sqrt{a}\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\cdot\dfrac{a-4}{2\sqrt{a}}\)

\(=\dfrac{a+2\sqrt{a}+a-2\sqrt{a}}{a-4}\cdot\dfrac{a-4}{2\sqrt{a}}=\dfrac{2a}{2\sqrt{a}}=\sqrt{a}\)

b: A-2<0

=>\(\sqrt{a}-2< 0\)

=>\(\sqrt{a}< 2\)

=>0<=a<4

kết hợp ĐKXĐ, ta được: 0<a<4

c: Để \(\dfrac{4}{A+1}=\dfrac{4}{\sqrt{a}+1}\) là số nguyên thì

\(\sqrt{a}+1\inƯ\left(4\right)\)

=>\(\sqrt{a}+1\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(\sqrt{a}\in\left\{0;-2;1;-3;3;-5\right\}\)

=>\(\sqrt{a}\in\left\{0;1;3\right\}\)

=>\(a\in\left\{0;1;9\right\}\)

Kết hợp ĐKXĐ, ta được: \(a\in\left\{1;9\right\}\)

19 tháng 12 2023

a) \(A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-2}+\dfrac{\sqrt{a}}{\sqrt{a}+2}\right)\cdot\dfrac{a-4}{\sqrt{4a}}\left(dkxd:a\ge0;a\ne4\right)\)

\(=\left[\dfrac{\sqrt{a}\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}+\dfrac{\sqrt{a}\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\right]\cdot\dfrac{a-4}{2\sqrt{a}}\)

\(=\dfrac{a+2\sqrt{a}+a-2\sqrt{a}}{a-4}\cdot\dfrac{a-4}{2\sqrt{a}}\)

\(=\dfrac{2a}{2\sqrt{a}}\)

\(=\sqrt{a}\)

b) Để \(A-2< 0\) thì: \(\sqrt{a}-2< 0\)

\(\Rightarrow\sqrt{a}< 2\)

\(\Rightarrow a< 4\)

Kết hợp với điều kiện xác định của \(a\), ta được: \(0\le a< 4\)

c) Để \(\dfrac{4}{A+1}\) nguyên thì \(\dfrac{4}{\sqrt{a}+1}\) nguyên

\(\Rightarrow4⋮\sqrt{a}+1\)

\(\Rightarrow\sqrt{a}+1\inƯ\left(4\right)\)

Mà \(\sqrt{a}+1\ge1\forall a\ge0;a\ne4\)

\(\Rightarrow\sqrt{a}+1\in\left\{1;2;4\right\}\)

\(\Rightarrow\sqrt{a}\in\left\{0;1;3\right\}\)

\(\Rightarrow a\in\left\{0;1;9\right\}\)

Kết hợp với điều kiện xác định của \(a\), ta được: \(a\in\left\{0;1;9\right\}\)

\(\text{#}Toru\)