tìm giá trị nguyên của a để biểu thức (a-2)/ (4-a ) đạt giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(A=\dfrac{3}{x-1}\)
Điều kiện \(|x-1|\ge0\)
\(\Rightarrow A=\dfrac{3}{x-1}\ge0\)
\(GTNN\left(A\right)=0\) \(\Rightarrow x-1=+\infty\Rightarrow x\rightarrow+\infty\)
b) \(GTLN\left(A\right)\) không có \(\left(A=\dfrac{3}{x-1}\ge0\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
![](https://rs.olm.vn/images/avt/0.png?1311)
a:
ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne4\end{matrix}\right.\)
\(A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-2}+\dfrac{\sqrt{a}}{\sqrt{a}+2}\right)\cdot\dfrac{a-4}{\sqrt{4a}}\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+2\right)+\sqrt{a}\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\cdot\dfrac{a-4}{2\sqrt{a}}\)
\(=\dfrac{a+2\sqrt{a}+a-2\sqrt{a}}{a-4}\cdot\dfrac{a-4}{2\sqrt{a}}=\dfrac{2a}{2\sqrt{a}}=\sqrt{a}\)
b: A-2<0
=>\(\sqrt{a}-2< 0\)
=>\(\sqrt{a}< 2\)
=>0<=a<4
kết hợp ĐKXĐ, ta được: 0<a<4
c: Để \(\dfrac{4}{A+1}=\dfrac{4}{\sqrt{a}+1}\) là số nguyên thì
\(\sqrt{a}+1\inƯ\left(4\right)\)
=>\(\sqrt{a}+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(\sqrt{a}\in\left\{0;-2;1;-3;3;-5\right\}\)
=>\(\sqrt{a}\in\left\{0;1;3\right\}\)
=>\(a\in\left\{0;1;9\right\}\)
Kết hợp ĐKXĐ, ta được: \(a\in\left\{1;9\right\}\)
a) \(A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-2}+\dfrac{\sqrt{a}}{\sqrt{a}+2}\right)\cdot\dfrac{a-4}{\sqrt{4a}}\left(dkxd:a\ge0;a\ne4\right)\)
\(=\left[\dfrac{\sqrt{a}\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}+\dfrac{\sqrt{a}\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\right]\cdot\dfrac{a-4}{2\sqrt{a}}\)
\(=\dfrac{a+2\sqrt{a}+a-2\sqrt{a}}{a-4}\cdot\dfrac{a-4}{2\sqrt{a}}\)
\(=\dfrac{2a}{2\sqrt{a}}\)
\(=\sqrt{a}\)
b) Để \(A-2< 0\) thì: \(\sqrt{a}-2< 0\)
\(\Rightarrow\sqrt{a}< 2\)
\(\Rightarrow a< 4\)
Kết hợp với điều kiện xác định của \(a\), ta được: \(0\le a< 4\)
c) Để \(\dfrac{4}{A+1}\) nguyên thì \(\dfrac{4}{\sqrt{a}+1}\) nguyên
\(\Rightarrow4⋮\sqrt{a}+1\)
\(\Rightarrow\sqrt{a}+1\inƯ\left(4\right)\)
Mà \(\sqrt{a}+1\ge1\forall a\ge0;a\ne4\)
\(\Rightarrow\sqrt{a}+1\in\left\{1;2;4\right\}\)
\(\Rightarrow\sqrt{a}\in\left\{0;1;3\right\}\)
\(\Rightarrow a\in\left\{0;1;9\right\}\)
Kết hợp với điều kiện xác định của \(a\), ta được: \(a\in\left\{0;1;9\right\}\)
\(\text{#}Toru\)