( 2003/2004 + 2004/2003 ) : 8028045/8028024
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(\left(2-\frac{3}{2}\right)\left(2-\frac{4}{3}\right)\left(2-\frac{5}{4}\right)\left(2-\frac{6}{4}\right)\)
\(=\frac{1}{3}\left(-\frac{4}{3}+2\right)\left(-\frac{5}{4}+2\right)\left(-\frac{6}{4}+2\right)\)
\(=\frac{1}{2}.\frac{2}{3}\left(-\frac{5}{4}+2\right)\left(-\frac{6}{4}+2\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}\left(-\frac{6}{4}+2\right)\)
\(=\frac{1.2.3\left(2-\frac{3}{2}\right)}{2.3.4}\)
\(=\frac{1.3\left(2-\frac{3}{2}\right)}{3.4}\)
\(=\frac{1.\left(2-\frac{3}{2}\right)}{4}\)
\(=\frac{2-\frac{3}{4}}{4}\)
\(=\frac{1}{2.4}\)
\(=\frac{1}{8}\)
b) \(\left(\frac{2003}{2004}+\frac{2004}{2003}\right):\frac{8028025}{8028024}\)
\(=\frac{8028024\left(\frac{2003}{2004}+\frac{2004}{2003}\right)}{8028025}\)
\(=\frac{8028024.\frac{8028025}{4014012}}{8028025}\)
\(=\frac{16056050}{8028025}\)
= 2

A = \(\frac{2004-2003}{2004+2003}\)và B = \(\frac{2004^2-2003^2}{2004^2+2003^2}\)
Ta đặt : 2004 = x
2003 = y
Theo tính chất cơ bản của phân thức , ta có :
\(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+y^2+2xy}\) ( 1 )
Vì x > 0 , y > 0 nên x2 + y2 + 2xy > x2 + y2
\(\Rightarrow\frac{x^2-y^2}{x^2+y^2+2xy}< \frac{x^2-y^2}{x^2+y^2}\) ( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
Vậy A < B
https://h.vn/hoi-dap/tim-kiem?q=so+s%C3%A1nh+2+ph%C3%A2n+s%E1%BB%91++A=+2004%5E2003++1+/+2004%5E2004++1++B=2004%5E2002+1/2004%5E2003++1&id=238505

A = \(\dfrac{2004-2003}{2003+2004}\) = \(\dfrac{\left(2004-2003\right).\left(2004+2003\right)}{\left(2003+2004\right).\left(2004+2003\right)}\) =\(\dfrac{2004^2-2003^2}{\left(2003+2004\right)^2}\)
Vì 20032 + 20042 < (2003 + 2004)2
Nên A < B


\(\dfrac{a+2003}{a-2003}=\dfrac{b-2004}{b+2004}\)
\(\Leftrightarrow\left(a+2003\right)\left(b+2004\right)=\left(a-2003\right)\left(b-2004\right)\)
\(\Leftrightarrow ab+2004a+2003a+2003\cdot2004=ab-2004a-2003a+2003\cdot2004\)
\(\Leftrightarrow4008a=4006b\)
=>a/b=2003/2004
hay a/2003=b/2004
hmm......để nghĩ đã nha [[ bối rối ]]
8028045/8028024