cho p là số nguyên tố > 3 và 8p+1 không chia hết cho 3 . chứng minh: 8p - 1 chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì p lá số nguyên tố >3 suy ra p có 1 trong 2 dạng sau :
p = 3k +1 hoặc p =3k +2
nếu p = 3k +1 suy ra 8p+1 = 8(3k+1)+1 =24k + 8 + 1 =24k +9 =3 (8k+3) chia hết cho 3
p = 3k +1 ( loại vì bài ra 8p +1 là số nguyên tố )
p có dạng 3k +2
với p = 3k +2 suy ra 4p +1 = 4(3k+2)+1 =12k +8+1=12k +9=3(4k+3) chia hết cho 3 .
hay 4p +1 chia hết cho 3
vậy nếu p và 8p+1 là các số nguyên tố thì 4p +1 chia hết cho 3 ( đpcm )
nhớ k đúng cho mik nhé
Câu 1:
a: p=3 thì 3+2=5 và 3+10=13(nhận)
p=3k+1 thì p+2=3k+3(loại)
p=3k+2 thì p+10=3k+12(loại)
b: p=3 thì p+10=13 và p+20=23(nhận)
p=3k+1 thì p+20=3k+21(loại)
p=3k+2 thì p+10=3k+12(loại)
2.
p là số nguyên tố > 3 => p lẻ p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2 +) Xét p = 3k + 1 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố => d chia hết cho 3 +) Xét p = 3k + 2 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt => d chia hết cho 3 Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6
Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)
=> p^2 :3(dư 1)
=> p^2+2018 chia hết cho 3 và>3
nên là hợp số
2, Vì n ko chia hết cho 3 và>3
nên n^2 chia 3 dư 1
=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố
3, Ta có:
P>3
p là số nguyên tố=>8p^2 không chia hết cho 3
mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3
Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3
mà 2 số trước ko chia hết cho 3
nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)
4, Vì p>3 nên p lẻ
=> p+1 chẵn chia hết cho 2 và>2
p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)
=> p+1=3k+3 chia hết cho 3 và>3
từ các điều trên
=> p chia hết cho 2.3=6 (ĐPCM)
b) Ta có
\(\frac{6n+3}{3n+6}=\frac{6n+12-9}{3n+6}=\frac{2.\left(3n+6\right)-9}{3n+6}=2-\frac{9}{3n+6}\)
3 n + 6 là ước nguyên của 9
\(3n+6=1\Rightarrow n=-\frac{5}{3}\)(loại)
\(3n+6=3\Rightarrow n=-1\)( chọn )
\(3n+6=9\Rightarrow n=1\)( chọn )
\(3n+6=-1\Rightarrow n=-\frac{7}{3}\)( loại )
\(3n+6=-3\Rightarrow n=-3\)( chọn )
\(3n+6=-9\Rightarrow n=-5\)( chọn )
KL : \(n\in\){ 1; -1; -3; -5 }
Ai thấy đúng thì ủng hộ nha!!
câu 2: ta có 8p(8p+1)(8p+2) chia hết cho 3
=>16p(8p+1)(4p+1) chia het cho 3
mà 16 không chia hết cho 3,p và 8p+1 là snt >3 nên không chia hết cho 3
=>4p+1 chia hết cho 3
a) p=1 và 8x1 là số nguyên tố
CM:8x số tự nhiên khng lá số nguyên tố
b) cho q là số nguyên tố >3
thì p=1
CM p+1 chia hết cho 6 khi p+1 là bội của 6
+) Sử dụng tính chất: Tích của 3 số tự nhiên liên tiếp chia hết cho 3
ta có: 8p - 1; 8p ; 8p + 1 là 3 số tự nhiên liên tiếp nên (8p -1).8p.(8p+1) chia hết cho 3
Mà p là số nguyên tố > 3 ; 8 không chia hết cho 3 => 8p không chia hết cho 3
8p + 1 khôg chia hết cho 3
Nên 8p - 1 chia hết cho 3