K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

a) Gọi \(d=ƯCLN\left(n+4;n+3\right)\) (\(d\in N\)*)

\(\Leftrightarrow\left\{{}\begin{matrix}n+4⋮d\\n+3⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(d\in N\)*\(;1⋮d\Leftrightarrow d=1\)

\(\LeftrightarrowƯCLN\left(n+4;n+3\right)=1\)

\(\Leftrightarrow\) Phân số \(\dfrac{n+4}{n+3}\) tối giản với mọi \(n\in N\)

b) Gọi \(d=ƯCLN\left(n-1;n-2\right)\) (\(d\in N\)*)

\(\Leftrightarrow\left\{{}\begin{matrix}n-1⋮d\\n-2⋮d\end{matrix}\right.\)

\(\Leftrightarrow-3⋮d\)

\(d\in N\)*; \(-3⋮d\Leftrightarrow d=1;3\)

Phân số này ko tối giản nhé bn! xem lại đề ik!

30 tháng 6 2017

chịu

20 tháng 4 2018

b, n1n2

Ta có: \(\dfrac{n-1}{n-2}\)= \(\dfrac{n-2+3}{n-2}=\dfrac{n-2}{n-2}+\dfrac{3}{n-2}=1+\dfrac{3}{n-2}\)

Để (n-1) chia hết (n-2) thì 3 chia hết cho (n-2)

Hay (n-2) thuộc Ư(3)

Ta có : Ư(3)=\(\left\{-3;-1;1;3\right\}\)

TH1: n-2 = -3 \(\Rightarrow n=-1\)

TH2: n-2= -1 \(\Rightarrow n=1\)

TH3: n-2 = 1\(\Rightarrow n=3\)

TH4: n- 2 = 3\(\Rightarrow n=5\)

Vậy n\(\in\left\{-1;1;3;5\right\}\)thì \(\dfrac{n-1}{n-2}\)

4 tháng 3 2017

Gọi d là ƯCLN của 12n + 1 và 30n + 2 

Khi đó : 12n + 1 chia hết cho d , 30n + 2 chia hết cho d 

<=> 5.(12n + 1) chia hết cho d , 2(30n + 2) chia hết cho d 

=> 60n + 5 chia hết cho d , 60n + 4 chia hết cho d 

=> (60n + 5) - (60n + 4) chia hết cho d 

=> 1 chia hết cho d

=> d = 1

Vậy phân số \(A=\frac{12n+1}{30n+2}\)

4 tháng 3 2017

Gọi ƯCLN(12n+1;30n+2)=d => 12n+1 chia hết cho d; 30n+2 chia hết cho d

=>5(12n+1) chia hết cho d và 2(30n+2) chia hết cho d

=>60n+5 chia hết cho d và 60n+4 chia hết cho d

=>(60n+5)-(60n-+4) chia hết cho d

=>1 chia hết cho d

=>d=1

Phân số \(\frac{12n+1}{30n+2}\) có ƯCLN(12n+1;30n+2)=> \(\frac{12n+1}{30n+2}\) tối giản với mọi số nguyên n

10 tháng 7 2017

Gọi \(d=ƯCLN\left(n+3;2n+5\right)\left(d\in N\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}n+3⋮d\\2n+5⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+6⋮d\\2n+5⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(d\in N;1⋮d\Leftrightarrow d=1\)

\(\LeftrightarrowƯCLN\left(n+3;2n+5\right)=1\)

\(\Leftrightarrow\)Phân số \(\dfrac{n+3}{2n+5}\) tối giản với mọi n

Báo đáp j ế!

10 tháng 7 2017

Gọi \(d\)\(UCLN\left(n+3;2n+5\right)\)

\(\Rightarrow n+3⋮d\Rightarrow2\left(n+3\right)⋮d\Rightarrow2n+6⋮d\)

\(\Rightarrow2n+5⋮d\)

\(\Leftrightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)

\(2n+6-2n-5⋮d\)

\(1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow\dfrac{n+3}{2n+5}\) tối giản với mọi \(n\in N\)

DD
22 tháng 5 2021

a) Đặt \(d=\left(3n-2,4n-3\right)\).

Suy ra \(\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow4\left(3n-2\right)-3\left(4n-3\right)=1⋮d\Rightarrow d=1\).

Ta có đpcm. 

b) Đặt \(d=\left(4n+1,6n+1\right)\).

Suy ra \(\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}}\Rightarrow3\left(4n+1\right)-2\left(6n+1\right)=1⋮d\Rightarrow d=1\).

Ta có đpcm. 

11 tháng 4 2016

để p/số trên tối giản thì ƯCLN  là 1,gọi số đó là d

n+1:d,2n+2:d

2n+3-2n-2:d

1:d

d=1

vậy p/số đó luôn tối giản

11 tháng 4 2016

gọi ƯC(n+1;2n+3)=d

ta có n+1 chia hết cho d nên 2(n+1) chia hết cho d nên 2n+2 cũng chia hết cho d , mặt khác 2n+3 chia hết cho d

nên 2n+3-(2n+2) chia hết cho d nên 1 chia hết cho d vậy ƯC của n+1 và 2n+3 là 1 hoặc -1

do đó mọi fân số dạng n+1/2n+3 đều là phân số tối giản