Tìm các cặp số nguyên p,q thỏa mãn:
52p + 2016 = 52p2 + q2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bổ đề : Số chính phương chia 5 chỉ dư 1 và 4 (bạn tự CM)
Ta dễ dàng thấy 5^2p + 2013 chia 5 dư 3 (vế trái chia 5 dư 3) (1)
Từ bổ đề ta có q^2 chia 5 dư 1 hoặc 4 mà 5^2p^2 chia hết cho 5 nên vế phải chia 5 dư 1 hoặc 4 (2)
Từ (1) và (2), ta thấy sự mâu thuẫn
Vậy không có p q nguyên tố thoả mãn đề bài
k nhé
Câu hỏi của FFPUBGAOVCFLOL - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo nhé
\(p^2-2q^2=1\)
\(\Rightarrow p^2=2q^2+1\)
\(\Rightarrow p\) là số lẻ
Đặt \(p=2n+1\Rightarrow p^2=4n^2+4n+1\)
mà \(p^2=2q^2+1\)
\(\Rightarrow4n^2+4n+1=2q^2+1\)
\(\Rightarrow2\left(2n^2+2n\right)=2q\)
\(\Rightarrow2n^2+2n=q\)
\(\Rightarrow2\left(n^2+n\right)=q\)
\(\Rightarrow q\) là số chẵn
mà \(q\) là số nguyên tố
\(\Rightarrow q=2\)
\(\Rightarrow p^2=2.2^2+1=9\Rightarrow p=3\)
Vậy \(\left(p;q\right)\in\left\{3;2\right\}\) thỏa mãn đề bài
Ta có: \(p^2-2q^2=1\)
Do 1 là số lẻ nên \(2q^2\) chẵn và \(p\) lẻ
\(\Rightarrow p^2-1=2q^2\)
\(\Leftrightarrow\left(p-1\right)\left(p+1\right)=2q^2\)
Mà \(p\) lẻ nên \(p+1,p-1\) đều là chẵn
\(\Rightarrow\left(q-1\right)\left(q+1\right)\) ⋮ 4
\(\Leftrightarrow q^2\) ⋮ 2 \(\Rightarrow q\) ⋮ 2 \(\Rightarrow q=2\)
\(\Rightarrow p^2=2\cdot2^2+1=9\Rightarrow q=3\)
Vậy: (q;p) là (2;3)
Có:
\(2x^2+1=y^2-yx^2\)
<=> \(x^2\left(y+2\right)=\left(y-1\right)\left(y+1\right)\)
=> \(x^2\left(y+2\right)⋮\left(y+1\right)\)mà y+1 và y+2 là hai số nguyên liên tiếp nên nguyên tố cùng nhau
=> \(x^2⋮\left(y+1\right)\)
Đặt: \(x^2=\left(y+1\right)t\)( t thuộc Z)
Ta có phương trình : \(t\left(y+2\right)=y-1\)
,+) Với y=-2 => y+2 =0 => y-1 =0 => y=1 vô lí
+) Với y khác -2
Chia ca hai vế cho y+2 ta có:
\(t=\frac{y-1}{y+2}=1-\frac{3}{y+2}\)
Tìm y để t thuộc Z
Ta có: y+2 thuộc U(3)={-3; -1; 1; 3}
+) y+2 =-3 => y=-5 => t=2 => x^2 =(y+1)t= -8 ( loại)
+) y+2 =-1 => y=-3 => t=2 => x^2 =(y+1)t= -4 ( loại)
+) y+2=1 => y=-1 => t=-2 => x^2= 0 => x=0
+) y+2 =3 => y=1 => t=0 => x^2 =0 => x=0
THử lại thấy x=0; y=1 và x=0 ;y=-1 thỏa mãn
Vậy ...
[Toán 7] Đại số nâng cao | Diễn đàn HOCMAI - Cộng đồng học tập lớn nhất Việt Nam