K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chắc các bạn lớp 8;9 sẽ cần Xét đa thức $f\left(x\right)=ax^4+bx^3+cx^2+dx+e$ với $a\ne 0$Khi đó $ax^4+bx^3+cx^2+dx+e=a\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)$$\Leftrightarrow ax^{4\: }+bx^3+cx^2+dx+e=a\left(x^2-Sx+P\right)\left(x^2-S'x+P'\right)$Trong...
Đọc tiếp

Chắc các bạn lớp 8;9 sẽ cần 

Xét đa thức $f\left(x\right)=ax^4+bx^3+cx^2+dx+e$ với $a\ne 0$

Khi đó 

$ax^4+bx^3+cx^2+dx+e=a\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)$

$\Leftrightarrow ax^{4\: }+bx^3+cx^2+dx+e=a\left(x^2-Sx+P\right)\left(x^2-S'x+P'\right)$

Trong đó

$\hept{\begin{cases}\orbr{\begin{cases}S=x_1+x_2=x_1+x_3=x_1+x_4=x_2+x_3=x_2+x_4=x_3+x_4\\S'=x_3+x_4=x_2+x_4=x_2+x_3=x_1+x_4=x_1+x_3=x_1+x_2\end{cases}}\\\orbr{\begin{cases}P=x_1x_2=x_1x_3=x_1x_4=x_2x_3=x_2x_4=x_3x_4\\P'=x_3x_4=x_2x_4=x_2x_3=x_1x_4=x_1x_3=x_1x_2\end{cases}}\end{cases}}$

Khi tìm đc S;S';P;P' thì bài toán sẽ đc giải quyết 

Quy trình ép tích 

Bước 1

Bấm máy tính tìm các nghiệm $x_1;x_2;x_3;x_4$

Gán $x_1\rightarrow A;x_2\rightarrow B;x_3\rightarrow C;x_4\rightarrow D$

Dùng máy tính dò tìm S;S';P;P' hợp lí nhất có thể

Dự đoán $ax^4+bx^3+cx^2+dx+e=a\left(x^2-Sx+P\right)\left(x^2-S'x+P'\right)$

Bước 2: Ép tích theo kết quả biết trước

$ax^4+bx^3+cx^2+dx+e=a\left(x^2-Sx+P\right)\left(x^2-S'x+P'\right)$

 

0
28 tháng 4 2017

Ta có: f(-2)=16a-8b+4c-2d+e

f(1)=a+b+c+d+e(2)

5a+c=3b+d

=>20a+4c=12b+4d

=>f(-2)=12b+4d-8b-2d-4a+e=4b+2d-4a+e

5a+c=3b+d

=>3b-4a=a+c-d

=>f(-2)=a+b+c+d+e(2)

Từ (1) và (2) => f(-2).f(1)=(a+b+c+d+e)2\(\ge0\)với mọi a,b,c,d,e(đpcm)

7 tháng 3 2019

f(x0)=?.

7 tháng 3 2019

2.f(x)=x^2+4x+10=x^2+4x+4+6=(x+2)^2+6

Mà(x+2)^2>=0=>(x+2)^2+6>0=>f(x) vô nghiệm

ahhii

8 tháng 7 2020

Gọi số khẩu trang y tế làm được mỗi ngày là a(a>0) cái/ngày

Số lượng khẩu trang y tế làm được trong 20 ngày là 20a (cái).

Số lượng khẩu trang 3M làm được trong 20 ngày là 10000-20a (cái).

Số khẩu trang 3M làm được trong 1 ngày là : (10000-20a)/20 (cái/ngày).

Theo đề bài, ta có phương trình :

a- (10000-20a)/20=100

<=>20a/20-(10000-20a)/20=100

<=>(20a-10000+20a)/20=100

<=>(40a-10000)/20=100

<=>40a-10000=2000

<=>40a=12000

<=>a=300(cái/ngày).

Vậy đơn vị làm được 300 chiếc khẩu trang y tế 1 ngày và làm được 300-100=200 cái khẩu trang 3M trong 1 ngày.

30 tháng 1 2018

Ta có \(f\left(-2\right).f\left(3\right)=\left(4a-2b+c\right)\left(9a+3b+c\right)\)

\(=36a^2-6b^2+c^2-6ab+13ac+bc\)

Thay b = - 13a - 2c, ta có

 \(36a^2-6\left(-13a-2c\right)^2+c^2-6a\left(-13a-2c\right)+13ac+\left(-13a-2c\right)c\)

\(=-900a^2-300ac-25c^2=-25\left(36a^2+12ac+c^2\right)\)

\(-25\left(6a+c\right)^2\le0\forall a;c\)

Vậy nên \(f\left(-2\right).f\left(3\right)\le0\)

DM
31 tháng 1 2018

Cách này đơn giản hơn:  Có   \(f\left(-2\right)=4a-2b+c;f\left(3\right)=9a+3b+c\) 

Do đó   \(f\left(-2\right)+f\left(3\right)=13a+b+2c=0\) (theo giả thiết). Từ đó \(f\left(-2\right)=-f\left(3\right)\) nên 

                                      \(f\left(-2\right)f\left(3\right)=-f^2\left(3\right)\le0\)