tập nghiệm của đa thức \(x^3+5x^2-4x-20\) là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P\left(1\right)=1^3-1^2-4\cdot1+4=-4+4=0\)
=>x=1 là nghiệm của P(x)
\(P\left(-2\right)=\left(-2\right)^3-\left(-2\right)^2-4\cdot\left(-2\right)+4=-8-4+8+4=0\)
=>x=-2 là nghiệm của P(x)
b: \(P\left(1\right)=5\cdot1^3-7\cdot1^2+4\cdot1-2=5-7+4-2=0\)
=>x=1 là nghiệm của P(x)
a: f(x)=-2x^7+4x^3-2x^2+3
g(x)=-5x^7-2x^3+x
b: f(x)+g(x)
=-2x^7+4x^3-2x^2+3-5x^7-2x^3+x
=-7x^7+2x^3-2x^2+x+3
f(x)-g(x)
=-2x^7+4x^3-2x^2+3+5x^7+2x^3-x
=3x^7+6x^3-2x^2-x+3
c: f(0)=0+0+0+3=3
=>x=0 ko là nghiệm của f(x)
g(0)=0+0+0=0
=>x=0 là nghiệm của g(x)
A(x)=4x4−6x2−7x3−5x−6
B(x)=−5x2+7x3+5x+4−4x4
a/ - Tính:
M(x)=A(x)+B(x)
M(x)=4x4+6x2−7x3−5x−6−5x2+7x3+5x+4−4x4
M(x)=x2−2
- Tìm nghiệm:
M(x)=x2−2=0⇔x2=2⇔x=−√2;x=√2
b/ C(x)+B(x)=A(x)⇒C(x)=A(x)−B(x)
C(x)=4x4−6x2−7x3−5x−6−(−5x2+7x3+5x+4−4x4)
C(x)=4x4−6x2−7x3−5x−6+5x2−7x3−5x−4+4x4
C(x)=8x4−14x3−x2−10x−10
cho đa thức : A(x)=4x^4+6x^2-7x^3-5x-6 và B(x)=-5x^2+x^3+5x+4-4x^4
a)Tính M(x)=A(x)+B(x) rồi tính nghiệm của đa thức M(x)
b)tìm đa thức C(x)sao cho C(x)|+B(x)=A(x)
3x3 - 4x + 5x2 - 2x3 + 8 - 5x2 - x3
= 3x3 - 2x3 - x3 + 5x2 - 5x2 - 4x + 8
= -4x + 8
ta có: -4x + 8 = 0
vì \(-4x\le0\) với mọi x
=> \(-4x+8\le-8< 0\)
=> đa thức trên ko có nghiệm
t i c k nhé
c: \(P\left(-1\right)=-3-5-4+2+6+4=0\)
Vậy: x=-1 là nghiệm của P(x)
\(Q\left(-1\right)=4+1+3+2-7+1=4< >0\)
=>x=-1 không là nghiệm của Q(x)
b.
Đặt \(f\left(x\right)=x^2-5x+51=x^2-5x+\dfrac{25}{4}+\dfrac{37}{2}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\)
Do \(\left(x-\dfrac{5}{2}\right)^2\ge0;\forall x\Rightarrow\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\ge\dfrac{37}{2}\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(f\left(x\right)\) không có nghiệm
c.
Đặt \(g\left(x\right)=-x^2-6x-45=-\left(x^2+6x+9\right)-36=-\left(x+3\right)^2-36\)
Do \(-\left(x+3\right)^2\le0;\forall x\Rightarrow-\left(x+3\right)^2-36\le-36\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(g\left(x\right)\) không có nghiệm
d.
Đặt \(h\left(x\right)=x^2-4x+26=\left(x^2-4x+4\right)+22=\left(x-2\right)^2+22\)
Do \(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2+22\ge22\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(h\left(x\right)\) không có nghiệm
4.
d. \(x^3-19x^2=0\)
\(\Leftrightarrow x^2\left(x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x-19=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=19\end{matrix}\right.\)
Vậy đa thức có 2 nghiệm là \(x=0;x=19\)
\(x^3+5x^2-4x-20=0\)
<=> \(x^2\left(x+5\right)-4\left(x+5\right)=0\)
<=> \(\left(x+5\right)\left(x^2-4\right)=0\)
<=> \(\left(x+5\right)\left(x+2\right)\left(x-2\right)=0\)
Vậy ta xét 3 trường hợp sau:
1) x + 5 =0
<=> \(x=-5\)
2) x +2 =0
<=> \(x=-2\)
3) \(x-2=0\)
<=> x =2
Vậy tập nghiệm của đa thức là {\(-5;-2;2\)}
\(x^3+5x^2-4x-20=0\)
\(\Rightarrow x^2\left(x+5\right)-4\left(x+5\right)=0\)
\(\Rightarrow\left(x^2-4\right)\left(x+5\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+2\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\\x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=-5\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{2;-2;-5\right\}\)