K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

a)

Khi a, b cùng dấu:

\(\Rightarrow\dfrac{a}{b}\ge0\) (Luôn luôn nhận giá trị không âm)

b)

Khi a, b khác dấu:

\(\Rightarrow\dfrac{a}{b}< 0\) (Luôn luôn nhận giá trị âm)

P/s: Đề phải là thế này nhé:

Cho số hữu tỉ abab ( a;bZ∈Z;b0≠0).

So sánh ababvới 0 khi

a) a, b cùng dấu.

b) a, b khác dấu.

Chúc bạn học tốt!ok

a ) khi a , b cùng dấu thì :

\(\dfrac{a}{b}\) \(\ge\) 0 ( vì luôn nhận giá trị dương hoặc = 0 )

b ) khi a , b khác dấu thì :

\(\dfrac{a}{b}\) \(\le\) 0 ( vì luôn nhận giá trị âm hoặc = 0 )

3 tháng 1 2017

Xét số hữu tỉ a/b, có thể coi b > 0.

Nếu a, b khác dấu thì a < 0 và b > 0.

Suy ra (a/b) < (0/b) = 0 tức là a/b âm.

22 tháng 8 2017

Xét số hữu tỉ a/b, có thể coi b > 0.

Nếu a, b cùng dấu thì a > 0 và b > 0.

Suy ra (a/b) > (0/b) = 0 tức là a/b dương.

15 giờ trước (14:17)

cô đé.o biết em ạ

15 giờ trước (14:18)

a) Số hữu tỉ

b) Số hữu tỉ

16 tháng 8

Cho \(x\) là số hữu tỉ khác \(0\), \(y\) là số vô tỉ.

  1. Chứng minh \(x + y\) vô tỉ.
    Giả sử \(x + y\) hữu tỉ. Khi đó

\(y = \left(\right. x + y \left.\right) - x .\)

Vì “hữu tỉ trừ hữu tỉ = hữu tỉ”, suy ra \(y\) hữu tỉ — mâu thuẫn với giả thiết \(y\) vô tỉ.
Vậy \(x + y\) là số vô tỉ.

  1. Chứng minh \(x y\) vô tỉ.
    Giả sử \(x y\) hữu tỉ. Do \(x \neq 0\), ta có

\(y = \frac{x y}{x} .\)

Vì “hữu tỉ chia hữu tỉ khác 0 = hữu tỉ”, suy ra \(y\) hữu tỉ — mâu thuẫn.
Vậy \(x y\) là số vô tỉ.
mik chỉ biết bài 1,bn thông cảm nha! có gì cho mình xin 1 tick với nhé!

10 tháng 8 2016

a, Tích của 2 số hữu tỉ 

\(\frac{7}{20}\cdot\left(-1\right)=-\frac{7}{20}\)

b, Thương của 2 số hữu tỉ

\(1:-\frac{20}{7}=1\cdot-\frac{7}{20}=-\frac{7}{20}\)

c, Tổng của 1 số hữu tỉ dương và 1 số hữu tỉ âm

\(\frac{3}{5}+\frac{-19}{20}=\frac{12}{20}+\frac{-19}{20}=-\frac{7}{20}\)

d, Tổng của 2 số hữu tỉ âm trong đó 1 số là - 1/5

\(-\frac{1}{5}+\frac{-3}{20}=\frac{-4}{20}+\frac{-3}{20}=-\frac{7}{20}\)

 

 

 

20 tháng 8 2015

Cho 3 **** kiểu gì nào?

a) a,b có thể là số vô tỉ. Ví dụ \(a=b=\sqrt{2}\) là vô tỉ mà ab và a/b đều hữu tỉ.

b) Trong trường hợp này \(a,b\) không là số vô tỉ (tức cả a,b đều là số hữu tỉ). Thực vậy theo giả thiết  \(a=bt\),  với \(t\) là số hữu tỉ khác \(-1\). Khi đó \(a+b=b\left(1+t\right)=s\) là số hữu tỉ, suy ra \(b=\frac{s}{1+t}\) là số hữu tỉ. Vì vậy \(a=bt\)  cũng hữu tỉ.

c) Trong trường hợp này \(a,b\)  có thể kaf số vô tỉ. Ví dụ ta lấy \(a=1-\sqrt{3},b=3+\sqrt{3}\to a,b\) vô tỉ nhưng \(a+b=4\)  là số hữu tỉ và \(a^2b^2=\left(ab\right)^2=12\)  cũng là số hữu tỉ.

16 tháng 6 2017

cho hỏi x đâu ra vậy

4 tháng 8 2018

hình như bn í lộn x là y hay sao ấy

9 tháng 11 2015

ko bik làm thông cảm nha( OLM đừng xóa )

10 tháng 11 2015

a) Chứng minh phản chứng: Giả sử tổng đó là số hữu tỉ

=> Số hạng vô tỉ = Số hữu tỉ - Số hữu tỉ => Số vô tỉ = Số hữu tỉ => Mâu thuẫn

Vậy tổgg só là số vô tỉ

10 tháng 11 2015

là số vô tỉ

cô Loan viết xong không xem lại đề