K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

Gọi d là UCLN(3n+2;2n+1)

Vì d là UCLN(3n+2;2n+1) nên

3n+2\(⋮\)d=>2(3n+2)\(⋮\)d=>6n+4\(⋮\)d

2n+1\(⋮\)d=>3(2n+1)\(⋮\)d=>6n+3\(⋮\)d

Vì 6n+3 và 6n+4\(⋮\)d nên

(6n+4)-(6n+3)\(⋮\)d

6n+4-6n-3\(⋮\)d

1\(⋮\)d

=>\(\dfrac{3n+2}{2n+1}\) tối giản với mọi n

8 tháng 6 2017

Gọi \(ƯC\left(3n+2;2n+1\right)\)\(d\)
\(\Leftrightarrow\left\{{}\begin{matrix}3n+2⋮d\\2n+1⋮d\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2\left(3n+2\right)⋮d\\3\left(2n+1\right)⋮d\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6n+4⋮d\\6n+3⋮d\end{matrix}\right.\)
\(\Leftrightarrow6n+4-\left(6n+3\right)⋮d\)
\(\Leftrightarrow6n+4-6n-3⋮d\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=\pm1\)
Vậy \(\dfrac{3n+2}{2n+1}\) là phân số tổi giản \(\forall\) \(n\in Z\)
Chúc bạn học tốt!

31 tháng 7 2021

Gọi a là ƯCLN(2n+1;3n+2)

Ta có 2n+1 chia hết cho a nên 3(2n+1) cũng chia hết cho a hay 6n+3 cũng chia hết cho a

Ta có 3n+2 chia hết cho a nên 2(3n+2) cũng chia hết cho a hay 6n+4 cũng chia hết cho a

Ta suy ra [(6n+4)-(6n+3)] chia hết cho a

                  (6n+4-6n-3) chia hết cho a

                   1 chia hết cho a

Gọi \(d\inƯC\left(2n+1;3n+2\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+4⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(2n+1;3n+2\right)=1\)

hay \(\dfrac{2n+1}{3n+2}\) là phân số tối giản

11 tháng 4 2023

gọi d là ƯCLN(2n+1;3n+2).theo bài ra ta có:

2n+1 chia hết cho d=>6n+3 chia hết cho d

3n+2 chia hết cho d=>6n+4 chia hết cho d

=>1 chia hết cho d=>d=1

vậy ...

11 tháng 4 2023

Gọi d ϵ ƯCLN\(\left(\dfrac{2n+1}{3n+2}\right)\)

Nên 2n+1⁝ d và 3n+2 ⁝ d

⇒ 3(2n+1) ⁝ d và 2(3n+2)

⇒ 6n+3 ⁝ d và 6n+4 ⁝ d

⇒ ( 6n+4 - 6n+3) ⁝ d

⇒ 1⁝ d

⇒ d= 1

Vậy:..

Chúc bạn học tốt

27 tháng 4 2017

Ta gọi d là UCLN( 2n + 1 ; 3n + 2 )

\(\Rightarrow2n+1⋮d\)

\(\Rightarrow3n+2⋮d\)

\(\Rightarrow3.\left(2n+1\right)⋮d\)

\(\Rightarrow2.\left(3n+2\right)⋮d\)

Hay \(6n+3⋮d\)

\(6n+4⋮d\)

\(\Rightarrow6n+4-\left(6n+3\right)⋮d\)

\(\Rightarrow1⋮d\)\(\Rightarrow d=1hoặc-1\)\(\Rightarrow dpcm\)

27 tháng 4 2017

Gọi ƯCLN(2n+1,3n+2) là d

Ta có : 2n+1 \(⋮\) d và 3n+2 \(⋮\) d

=> 3.(2n+1) \(⋮\) d và 2(3n+2) \(⋮\) d

=> 6n+3 \(⋮\) d và 6n+4 \(⋮\) d

=>(6n+4)-(6n+3) \(⋮\) d

=> 1 \(⋮\) d ( bạn tự làm phần trung gian nhé ^^)

=> d \(\inƯ\left(1\right)\)

=> d \(\in\left\{1;-1\right\}\)

Vì d lớn nhất => d =1 => ƯCLN(2n+1,3n+2) =1

=> 2n+1 và 3n+2 nguyên tố cùng nhau

=> ĐPCM

Tick nha ^^

6 tháng 1 2022

Giải:

Gọi  ƯCLN (2n+3;3n+5)=d

Ta có:

2n+3:d =>3. (2n+3):d

3n+5:d=> 2. (3n+5):d

=> [3. (2n+3) - 2.(3n+5)]:d

=>(6n+9 - 6n-10): d

=> -1:d

=> d={1,-1}

Tick mình nha

6 tháng 1 2022

cảm ơn bạn

 

1 tháng 4 2016

GỌI Đ LÀ ƯC (2N+1/3N+2)

=>2N+2 CHIA HẾT CHO Đ=>3(2N+3) CHIA HẾT CHO Đ

=>3N+2CHIA HẾT CHO Đ=>2(3N+4) CHIA HẾT CHO DD

=>(6N+3)-(6N+4) CHIA HẾT CHO Đ

=>1 CHIA HẾT CHO Đ

=>Đ=1

=>2N+1/3N+2 LÀ P/S TỐI GIẢN

1 tháng 4 2016

thiếu đề bài nha

sao mình giải được

12 tháng 7 2017

Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\left(d\in N\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+4⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(d\in N;1⋮d\Leftrightarrow d=1\)

\(\LeftrightarrowƯCLN\left(2n+1;3n+2\right)=1\)

\(\Leftrightarrow\) Phân số \(\dfrac{2n+1}{3n+2}\) tối giản với mọi n

12 tháng 7 2017

Gọi \(d\)\(UCLN\left(2n+1;3n+2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(\Rightarrow6n+4-6n-3⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

\(\Rightarrow\dfrac{2n+1}{3n+2}\) tối giản với mọi \(n\in N\rightarrowđpcm\)

12 tháng 7 2015

Gọi ƯCLN(2n+1; 3n+2) là d. Ta có:

2n+1 chia hết cho d => 6n+3 chia hết cho d

3n+2 chia hết cho d => 6n+4 chia hết cho d

=> 6n+4-(6n+3) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(2n+3; 3n+2) = 1

=>\(\frac{2n+1}{3n+2}\)là phân số tối giản (đpcm)

20 tháng 7 2016

Gọi d = ƯCLN(2n + 1; 3n + 2) (d thuộc N*)

=> 2n + 1 chia hết cho d; 3n + 2 chia hết cho d

=> 3.(2n + 1) chia hết cho d; 2.(3n + 2) chia hết cho d

=> 6n + 3 chia hết cho d; 6n + 4 chia hết cho d

=> (6n + 4) - (6n + 3) chia hết cho d

=> 6n + 4 - 6n - 3 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(2n + 1; 3n + 2) = 1

Chứng tỏ phân số 2n + 1/3n + 2 tối giản

30 tháng 4 2019

https://h.vn/hoi-dap/question/39186.html

30 tháng 4 2019

Gọi d là ƯCLN ( 2n + 1 ; 3n + 2 )( d thuộc N* )

=> 2n + 1 chia hết cho d ; 3n + 2 chia hết cho d  

=> 3( 2n + 1 ) chia hết cho d ; 2( 3n + 2 ) chia hết cho d

=> 6n + 3 chia hết cho d ; 6n + 4 chia hết cho d 

=> ( 6n + 4 ) - ( 6n + 3 ) chia hết cho d

=> 6n + 4 - 6n - 3 chia hết cho d 

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN( 2n + 1 ; 3n + 2 ) = 1 

Chứng tỏ phân số 2n + 1/3n + 2 tối giản

a: Gọi d=UCLN(2n+1;3n+2)

\(\Leftrightarrow6n+4-6n-3⋮d\)

=>d=1

=>Phân số tối giản

b: Gọi d=UCLN(3n+2;5n+3)

\(\Leftrightarrow15n+10-15n-9⋮d\)

=>d=1

=>Phân số tối giản