Cho: \(a^2-b^2=1\)
Tính: \(2\left(a^6-b^6\right)-3\left(a^4-b^4\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta thấy : \(\left\{{}\begin{matrix}\left(2a+1\right)^2\ge0\\\left(b+3\right)^2\ge0\\\left(5c-6\right)^2\ge0\end{matrix}\right.\)\(\forall a,b,c\in R\)
\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\ge0\forall a,b,c\in R\)
Mà \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\le0\)
Nên trường hợp chỉ xảy ra là : \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2=0\)
- Dấu " = " xảy ra \(\left\{{}\begin{matrix}2a+1=0\\b+3=0\\5c-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=-3\\c=\dfrac{6}{5}\end{matrix}\right.\)
Vậy ...
b,c,d tương tự câu a nha chỉ cần thay số vào là ra ;-;
mk làm bài 1 thui,bài 2 chỉ qui đồng ms
3a/6 = 3b/4 => 3(a-b)/ (6-4) = 3.4,5/2= 13,5/2 =k
a = 2k=13,5
b = 4k/3 =9
a: Ta có: \(\sqrt{\left(5-\sqrt{19}\right)^2}-\sqrt{\left(4-\sqrt{19}\right)^2}\)
\(=5-\sqrt{19}-\sqrt{19}+4\)
\(=9-2\sqrt{19}\)
b: Ta có: \(\sqrt{\left(3-2\sqrt{2}\right)^2}-\sqrt{\left(2\sqrt{2}-3\right)^2}\)
\(=3-2\sqrt{2}-3+2\sqrt{2}\)
=0
c.
Căn bậc 2 không xác định do $2-\sqrt{5}< 0$
d.
\(=\sqrt{(3+\sqrt{3})^2}(3+\sqrt{3})=|3+\sqrt{3}|(3+\sqrt{3})=(3+\sqrt{3})^2=12+6\sqrt{3}\)
e.
\(=(2-\sqrt{5})\sqrt{(2+\sqrt{5})^2}=(2-\sqrt{5})|2+\sqrt{5}|=(2-\sqrt{5})(2+\sqrt{5})=4-5=-1\)
Thay a = 6 ; b = 18 vào biểu thức \(a^2\left(a^2+b^2\right)\left(a^4+b^4\right)\left(a^6+b^6\right)\left(a^2-2.b\right)\)ta được :
\(6^2\left(6^2+18^2\right)\left(6^4+18^4\right)\left(6^6+18^6\right)\left(6^2-2.18\right)\)
\(=6^2\left(6^2+18^2\right)\left(6^4+18^4\right)\left(6^6+18^6\right)\left(36-36\right)\)
\(=0\)
1.
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)
Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)
Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)
Từ đó ta được đpcm
a) \(A=\left(-0,75-\dfrac{1}{4}\right):\left(-5\right)+\dfrac{1}{48}-\left(-\dfrac{1}{6}\right):\left(-3\right)\)
\(A=\left(-0,75-0,25\right):\left(-5\right)+\dfrac{1}{48}-\left(-\dfrac{1}{6}\right)\cdot\dfrac{-1}{3}\)
\(A=\left(-1\right):\left(-5\right)+\dfrac{1}{48}-\dfrac{1}{18}\)
\(A=\dfrac{1}{5}+\dfrac{1}{48}-\dfrac{1}{18}\)
\(A=\dfrac{119}{720}\)
b) \(B=\left(\dfrac{6}{25}-1,24\right):\dfrac{3}{7}:\left[\left(3\dfrac{1}{2}-3\dfrac{2}{3}\right):\dfrac{1}{14}\right]\)
\(B=\left(0,24-1,24\right):\dfrac{3}{7}:\left[\left(\dfrac{7}{2}-\dfrac{11}{3}\right):\dfrac{1}{14}\right]\)
\(B=-1:\dfrac{3}{7}:\left(-\dfrac{1}{6}:\dfrac{1}{14}\right)\)
\(B=-\dfrac{7}{3}:-\dfrac{7}{3}\)
\(B=1\)
a, A = (-0,75 - \(\dfrac{1}{4}\)) : (-5) + \(\dfrac{1}{48}\) - (- \(\dfrac{1}{6}\)) : (-3)
A = -(0,75 + 0,25): (-5) + \(\dfrac{1}{48}\) - \(\dfrac{1}{18}\)
A = -1 : (-5) + \(\dfrac{1}{48}\) - \(\dfrac{1}{18}\)
A = \(\dfrac{1}{5}\) + \(\dfrac{1}{48}\) - \(\dfrac{1}{18}\)
A = \(\dfrac{53}{240}\) - \(\dfrac{1}{18}\)
A = \(\dfrac{119}{720}\)
b, B = (\(\dfrac{6}{25}\) - 1,24): \(\dfrac{3}{7}\): [(3\(\dfrac{1}{2}\) - 3\(\dfrac{2}{3}\)): \(\dfrac{1}{14}\)]
B = (0,24 - 1,24): \(\dfrac{3}{7}\):[(\(\dfrac{7}{2}\)-\(\dfrac{11}{3}\)): \(\dfrac{1}{14}\)]
B = -1: \(\dfrac{3}{7}\):[ (-\(\dfrac{1}{6}\) : \(\dfrac{1}{14}\))]
B = -1: \(\dfrac{3}{7}\): (- \(\dfrac{7}{3}\))
B = 1 \(\times\) \(\dfrac{7}{3}\) \(\times\) \(\dfrac{3}{7}\)
B = 1
\(2\left(a^6-b^6\right)-3\left(a^4-b^4\right)\)
=\(2\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)-3\left(a^4-b^4\right)\)
=\(2\left(a^4-2a^2b^2+b^4\right)-3\left(a^4-b^4\right)+6a^2b^2\)
=\(2\left(a^2-b^2\right)^2-3\left(a^4-2a^2b^2+b^4\right)\)
=\(2\left(a^2-b^2\right)^2-3\left(a^2-b^2\right)^2\)
=2.1-3.1=2-3=-1
Chuẩn bị lm!