phân tích các đa thức sau thành nhân tử :
\(12x^2-23xy+10y^2\)
\(\left(x^2-8\right)^2+36\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P\left(x\right)=\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)
\(=\left[\left(4x+1\right)\left(3x+2\right)\right].\left[\left(12x-1\right)\left(x+1\right)\right]-4\)
\(=\left(12x^2+8x+3x+2\right).\left(12x^2+12x-x-1\right)-4\)
\(=\left(12x^2+11x+2\right).\left(12x^2+11x-1\right)-4\)
Đặt \(12x^2+11x=t\), ta có:
\(\left(t+2\right)\left(t-1\right)-4\)
\(=t^2-t+2t-2-4=t^2+t-6\)
\(=t^2-2t+3t-6\)
\(=t\left(t-2\right)+3\left(t-2\right)=\left(t-2\right)\left(t+3\right)\)
Thay \(t=12x^2+11x\), ta được:
\(P\left(x\right)=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)
Đs...
a: \(x^2+12x+36=0\)
=>\(x^2+2\cdot x\cdot6+6^2=0\)
=>\(\left(x+6\right)^2=0\)
=>x+6=0
=>x=-6
b: \(4x^2-4x+1=0\)
=>\(\left(2x\right)^2-2\cdot2x\cdot1+1^2=0\)
=>\(\left(2x-1\right)^2=0\)
=>2x-1=0
=>2x=1
=>x=1/2
c: \(x^3+6x^2+12x+8=0\)
=>\(x^3+3\cdot x^2\cdot2+3\cdot x\cdot2^2+2^3=0\)
=>\(\left(x+2\right)^3=0\)
=>x+2=0
=>x=-2
3*(\(4x^2-4xy+y^2\))-10(2x-y)+8
3*(2x-y)^2-10(2x-y)+8
3*(2x-y)^2-6(2x-y)-4(2x-y)+8
3(2x-y)(2x-y-2)-4(2x-y-2)
(2x-y-2)(6x-3y-40
\(\left(12x^2-12xy+3y^2\right)-10\left(2x-y\right)+8\)
\(=\left(12x^2-6xy-6xy+3y^2\right)-10\left(2x-y\right)+8\)
\(=\left[6x\left(2x-y\right)-3y\left(2x-y\right)\right]-10\left(2x-y\right)+8\)
\(=\left(2x-y\right)\left(6x-3y\right)-10\left(2x-y\right)+8\)
\(=3\left(2x-y\right)^2-10\left(2x-y\right)+8\)
Đặt \(2x-y=a\), khi đó biểu thức có dạng:
\(3a^2-10a+8=3a^2-6a-4a+8\)
\(=3a\left(a-2\right)-4\left(a-2\right)=\left(a-2\right)\left(3a-4\right)\)
\(=\left(2x-y-2\right)\left(6x-3y-4\right).\)
Bài 4:
\(x^3-2x^2+x=x\left(x-1\right)^2\)
\(5\left(x-y\right)-y\left(x-y\right)=\left(x-y\right)\left(5-y\right)\)
\(x^2-12x+36=\left(x-6\right)^2\)
\(x^4-2x^3-12x^2+12x+36=x^4+x^2+36-2x^3+12x-12x^2-x^2\)
\(=\left(x^2-x-6\right)^2-x^2=\left(x^2-6\right)\left(x^2-2x-6\right)\)
\(\left(x^2+2x\right)^2+4\left(x^2+2x\right)+5\left(x^2+2x\right)+20\)
\(=\left(x^2+2x\right)\left(x^2+2x+4\right)+5\left(x^2+2x+4\right)\)
\(=\left(x^2+2x+5\right)\left(x^2+2x+4\right)\)
\(a,x^2\left(x-2\right)-4x+8\\ =\left(x^2-4\right)\left(x-2\right)\\ =\left(x-2\right)^2\left(x+2\right)\\ b,x^2+7xy+10y^2\\ =x^2+2xy+5xy+10y^2\\ =x\left(x+2y\right)+5y\left(x+2y\right)\\ =\left(x+5y\right)\left(x+2y\right)\)
\(a.\) \(ax^2-a^2x-x+a\)
\(=\left(ax^2-a^2x\right)-\left(x-a\right)\)
\(=ax\left(x-a\right)-\left(x-a\right)\)
\(=\left(ax-1\right)\left(x-a\right)\)
\(b.\) \(18x^3-12x^2+2x\)
\(=2x\left(9x^2-6x+1\right)\)
\(=2x\left(3x-1\right)^2\)
\(c.\) \(x^3-5x^2-4x+20\)
\(=\left(x^3-5x^2\right)-\left(4x-20\right)\)
\(=x^2\left(x-5\right)-4\left(x-5\right)\)
\(=\left(x^2-4\right)\left(x-5\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x-5\right)\)
\(d.\) \(\left(x+7\right)\left(x+15\right)+15\)
\(=x^2+15x+7x+105+15\)
\(=x^2+22x+120\)
\(=\left(x+10\right)\left(x+12\right)\)
a) Ở trên
b) \(\left(x^2-8x\right)^2+36\) = \(x^4-16x^2+64+36\)
= \(\left(x^4+20x^2+100\right)-36x^2\)
= \(\left(x^2+10\right)^2-\left(6x\right)^2\)
= \(\left(x^2-6x+10\right)\left(x^2+6x+10\right)\)
a)
12x2 - 23xy + 10y2
= (12x2 - 8xy ) - ( 15xy - 10y2 )
= 4x(3x - 2y) - 5y(3x - 2y)
= (4x - 5y)(3x - 2y)
b)
( x2 - 8)2 + 36 = x4 - 16x2 + 64 +36
= (x4 + 20x2 +100) - 36x2
= (x2 + 10)2 - (6x)2
= (x2 + 10 - 6x)(x2 + 10 + 6x)