Voi moi so thuc x , cm : ( x-2).( x+3).( x +4).( x-6) +57 x2 > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Đ
2 S ( lớn hơn hoặc =.)
3S ( thêm hoặc =. vd x = 0)
4Đ
5S ( với mọi x >0)
6Đ
7Đ
1, xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= x2y+xy2+y2z+yz2+x2z+xz2+2xyz
=(x2y+x2z+xz2+xyz) + ( xy2+y2z+yz2+xyz)
=x(xy+xz+z2+yz)+y(xy+yz+z2+xz)
=(xy+xz+yz+z2).(x+y)
=(x(y+z)+z(y+z)).(x+y)
=((y+z).(x+z)).(x+y)= (x+y)(x+z)(y+z)
2. 3(x-3)(x-7)+(x-4)2+48
=3(x2+4x-21)+x2-8x+16+48
=4x2-4x+1 = (2x-1)2
Thay x=0,5 vào bt trên, ta có : (2.0,5 -1)2=0
3, x2-6x+10
= x2-2.3.x+9+1
=(x-3)2+1 \(\ge\)1 >0 ( do (x-3)2 >=0 với mọi x)
=> x26x+10 >0 với mọi x
4x-x2-5
=-(x2-4x+5)
=- (x2-2.2x+4+1)
= - ((x-2)2+1) = -(x-2)2-1\(\le\)-1 < 0 ( do (x-2)2\(\ge\)0 với mọi x => - (x-2)2\(\le\)0 với mọi x)
vậy, 4x-x2-5<0 với mọi x
Ta có : x2 - 6x + 10
= x2 - 6x + 9 + 1
= (x - 3)2 + 1
Mà (x - 3)2 \(\ge0\forall x\)
Nên : (x - 3)2 + 1 \(\ge1\forall x\)
=> (x - 3)2 + 1 \(>0\)(đpcm)
Ta có x2+y2-4x+2y + 7
= ( x2 -4x+2) + ( y2+2y+1)+4
= ( x-2)2 +( y+1)2 +4
Ta có ( x-2)2 >=0 và ( y+1)2 >=0
<=> ( x-2)2 +( y+1)2 +4>=4
vậy x2+y2-4x+2y + 7>=0
a) = x(x-1) +1
x(x-1) = 0 khi x = 0; x=1
còn lại x(x - 1) luôn >0
vậy A(x) >0 với mọi x
b) A(x) vô nghiệm vì A(x) luôn .> 0 (cmt)