tìm m để pt x2 -mx + m -1 =0 có 2 nghiệm phân biệt thỏa mãn x12 +3x2 = 19
giúp tớ !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x1^2+x2^2=(x1+x2)^2-2x1x2
=m^2-2(m-1)=m^2-2m+2
=>x1^2=m^2-2m+2-x2^2
x1^2+3x2=19
=>m^2-2m+2-x2^2+3x2=19
=>-x2^2+3x2+m^2-2m-17=0
=>x2^2-3x2-m^2+2m+17=0(1)
Để (1) có nghiệm thì Δ1>0
=>(-3)^2-4*1*(-m^2+2m+17)>0
=>9-4(-m^2+2m+17)>0
=>9+4m^2-8m-68>0
=>4m^2-8m-59>0
=>\(\left[{}\begin{matrix}m< \dfrac{2-3\sqrt{7}}{2}\\m>\dfrac{2+3\sqrt{7}}{2}\end{matrix}\right.\)
\(a,m=3=>x^2+3x-2=0\)
\(\Delta=3^2-4\left(-2\right)=17>0\)
pt có 2 nghiệm pb \(\left[{}\begin{matrix}x1=\dfrac{-3+\sqrt{17}}{2}\\x2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
b,\(\Delta=m^2-4\left(-2\right)=m^2+8>0\)
=> pt đã cho luôn có 2 nghiệm phân biệt x1,x2 với mọi m
theo vi ét \(\left\{{}\begin{matrix}x1+x2=-m\\x1x2=-2\end{matrix}\right.\)
có \(x1^2x2+x2^2x1=2014< =>x1x2\left(x1+x2\right)=2014\)
\(< =>-2\left(-m\right)=2014< =>m=1007\)
a) Thay m=3 vào phương trình, ta được:
\(x^2+3x-2=0\)
\(\Delta=3^2-4\cdot1\cdot\left(-2\right)=9+8=17\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{17}}{2}\\x_2=\dfrac{-3+\sqrt{17}}{2}\end{matrix}\right.\)
\(\Delta'=\left[-\left(m+1\right)^2\right]-\left(m^2-1\right)\\ =m^2+2m+1-m^2+1\\ =2m+2\)
Để PT có 2 nghiệm phân biệt thì: \(\Delta'>0\)
\(\Leftrightarrow2m+2>0\\\Leftrightarrow2m>-2\\ \Leftrightarrow m>-1 \)
Theo vi ét có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{2\left(m+1\right)}{1}=2m+2\\x_1x_2=\dfrac{c}{a}=m^2-1\end{matrix}\right.\)
Theo đề có:
\(x_1^2+x_2^2=x_1x_2+8\\ \Leftrightarrow x_1^2+x_2^2-x_1x_2-8=0\\ \Leftrightarrow x_1^2+x_2^2+2x_1x_2-x_1x_2-2x_1x_2-8=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2-8=0\\ \Leftrightarrow\left(2m+2\right)^2-3\left(m^2-1\right)-8=0\\ \Leftrightarrow4m^2+8m+4-3m^2+3-8\\ \Leftrightarrow m^2+8m-1=0 \)
\(\Delta=8^2-4.-1=64+4=68\) > 0
\(\Rightarrow m_1=\dfrac{-8+\sqrt{68}}{2}=-4+\sqrt{17}\left(nhận\right)\)
\(m_2=\dfrac{-8-\sqrt{68}}{2}=-4-\sqrt{17}\left(loại\right)\)
Vậy để phương trình có hai nghiệm phân biệt thỏa mãn x12 + x22 = x1x2 +8 thì m có giá trị là \(-4+\sqrt{17}\)
$HaNa$
Δ=(2m+2)^2-4(m^2-1)
=4m^2+8m+4-4m^2+4=8m+8
Để phương trình có hai nghiệm phân biệt thì 8m+8>0
=>m>-1
x1^2+x2^2=x1x2+8
=>(x1+x2)^2-2x1x2-x1x2=8
=>(2m+2)^2-3(m^2-1)-8=0
=>4m^2+8m+4-3m^2+3-8=0
=>m^2+8m-1=0
=>m=-4+căn 17(nhận) hoặc m=-4-căn 17(loại)
Tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/tim-m-de-phuong-trinh-x2-7x-m-2-0-co-nghiem-x1-x2-thoa-man-x12-3x2-3.4915847121620