K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

ab(a2-b2)=a3b-b3a=a3b-ab+ab-b3a=b(a3-a)+a(b-b3)=b(a3-a)-a(b3-b)

=ba(a-1)(a+1)-ab(b-1)(b+1) ta thấy a(a-1)(a+1) là 3 số nguyên liên tiếp luôn chia hết cho 6-->ab(a-1(a+1)chia hết cho 6

tương tự ab(b-1)(b+1)luôn chia hết cho 6

như vậy ab(a-1)(a+1)-ab(b-1)(b+1) luôn chia hết cho 6 với a,b thuộc Z hay ab(a2-b2) chia hết 6

27 tháng 3 2017

Ta có 

\(ab\left(a^2+b^2\right)\left(a^2\:-b^2\right)=a^5b\:\:-ab^5\)

\(=a^5b-ab+ab-ab^5\)

\(=ab\left(a+1\right)\left(a-1\right)\left(a+2\right)\left(a-2\right)+5ab\left(a-1\right)\left(a+1\right)-ab\left(b-1\right)\left(b+1\right)\left(b-2\right)\left(b+2\right)-5ab\left(b-1\right)\left(b+1\right)\)

Ta thấy rằng ab(a - 1)(a + 1)(a - 2)(a + 2) và ab(b - 1)(b + 1)(b - 2)(b +2) là tích của 5 số nguyên liên tiếp nên chia hết cho 30 (1)

Ta lại có: ab(a - 1)(a + 1) và ab(b -1)(b +1) là tích 3 số nguyên liên tiếp nên chia hết cho 6.

\(\Rightarrow\) 5ab(a - 1)(a + 1) và 5ab(b -1)(b +1) chia hết cho 30 (2)

Từ (1) và (2) ta suy ra điều phải chứng minh

28 tháng 3 2017

kho qua di

NV
26 tháng 3 2021

Ta sẽ chứng minh:

\(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}\)

Thật vậy, bình phương 2 vế, BĐT tương đương:

\(a^2+x^2+b^2+y^2+2\sqrt{a^2b^2+x^2y^2+a^2y^2+b^2x^2}\ge a^2+b^2+x^2+y^2+2ab+2xy\)

\(\Leftrightarrow\sqrt{a^2b^2+x^2y^2+a^2y^2+b^2x^2}\ge ab+xy\)

\(\Leftrightarrow a^2b^2+x^2y^2+a^2y^2+b^2x^2\ge a^2b^2+x^2y^2+2abxy\)

\(\Leftrightarrow a^2y^2+b^2x^2-2abxy\ge0\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)

Áp dụng:

\(VT=\sqrt{a^2+x^2}+\sqrt{b^2+y^2}+\sqrt{c^2+z^2}\)

\(VT\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}+\sqrt{c^2+z^2}\ge\sqrt{\left(a+b+c\right)^2+\left(x+y+z\right)^2}\) (đpcm)

6 tháng 11 2018

\(ab+bc+ca\le a^2+b^2+c^2\le\frac{\left(a+b+c\right)^2}{3}\) ( bđt phụ + Cauchy-Schwarz dạng Engel ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)

CM bđt phụ : \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)

\(\Leftrightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(\Leftrightarrow\)\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)

\(\Leftrightarrow\)\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( luôn đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)

Chúc bạn học tốt ~ 

6 tháng 11 2018

\(6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)\)

\(=6\left(x^2+y^2+z^2\right)+12\left(xy+yz+xz\right)+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)-2\left(xy+yz+xz\right)\)

\(=6\left(x+y+z\right)^2+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{2z+x+y}\right)-2\left(xy+yz+xz\right)\)

\(\ge6\left(x+y+z\right)^2+2.\dfrac{\left(1+1+1\right)^2}{2x+y+z+x+2y+z+2z+x+y}-2\left(xy+yz+xz\right)\)

\(=6\left(x+y+z\right)^2+\dfrac{18}{4\left(x+y+z\right)}-2\left(xy+yz+xz\right)\)

\(\ge6\left(x+y+z\right)^2+\dfrac{18}{4\left(x+y+z\right)}-\dfrac{2}{3}\left(x+y+z\right)^2\)

\(=6.\left(\dfrac{3}{4}\right)^2+\dfrac{18}{4.\dfrac{3}{4}}-\dfrac{2}{3}.\left(\dfrac{3}{4}\right)^2=9\)

\("="\Leftrightarrow x=y=z=\dfrac{1}{4}\)

6 tháng 11 2018

a) ab+bc+ca\(\le\dfrac{\left(a+c+b\right)^2}{3}\)

\(\Leftrightarrow3ab+3bc+3ac\le a^2+b^2+c^2+2ab+2bc+2ac\)

\(\Leftrightarrow ab+bc+ac\le a^2+b^2+c^2\)

\(\Leftrightarrow2ab+2bc+2ca\le2a^2+2b^2+2c^2\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng \(\forall a,b,c\)

26 tháng 2 2017
  • + Nếu trong 2 số a;b có 1 số chẵn => ab(a2 - b2) chia hết cho 2

+ Nếu a;b cùng lẻ thì a2;b2 cùng lẻ => a2 - b2 chẵn => ab(a2 - b2) chia hết cho 2

Như vậy, ab(a2 - b2) chia hết cho 2 với mọi a;b thuộc Z    (1)

  • + Nếu trong 2 số a;b có 1 số chia hết cho 3 => ab(a2 - b2) chia hết cho 3

+ Nếu trong 2 số a;b không có số nào chia hết cho 3 thì a2;b2 cùng chia 3 dư 1

=> a2 - b2 chia hết cho 3 => ab(a2 - b2) chia hết cho 3

Như vậy, ab(a2 - b2) chia hết cho 3 với mọi a;b thuộc Z     (2)

Từ (1) và (2), do (2;3)=1 => ab(a2 - b2) chia hết cho 6 (đpcm)

11 tháng 12 2022

a: Nếu a chẵn, b chẵn thì ab(a+b)=2k*2c*(2k+2c)=4kc(2k+2c) chia hết cho 2

Nếu a,b ko cùng tính chẵn lẻ thì 

ab(a+b)=2k(2c+1)(2k+2c+1) chia hết cho 2

Nếu a,b lẻ thì (a+b) chia hết cho 2

=>ab(a+b) chia hết cho 2

b: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)

a: \(A=a\left(a+1\right)\left(a+2\right)\)

Vì a;a+1;a+2 là ba số nguyên liên tiếp

nên \(A=a\left(a+1\right)\left(a+2\right)⋮3!=6\)

b: \(B=\left(2a-1\right)^3-\left(2a-1\right)\)

\(=\left(2a-1\right)\left[\left(2a-1\right)^2-1\right]\)

\(=\left(2a-1\right)\left(2a-2\right)\cdot2a\)

\(=4a\left(a-1\right)\left(2a-1\right)\)

Vì a;a-1 là hai số liên tiếp nên a(a-1) chia hết cho 2

=>B chia hết cho 8