Cho phân số \(A=\dfrac{n+1}{n-3},\left(n\in\mathbb{Z};n\ne3\right)\)
Tìm n để A là phân số tối giản ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 9.33.\(\dfrac{1}{81}\) .32 = 32. 33.\(\dfrac{1}{3^4}\) . 32 = 33
b) 4. 25: \(\) (23.\(\dfrac{1}{16}\))= 22. 25: 23. \(\dfrac{1}{2^4}\) = 27: \(\dfrac{1}{2}\) = 27. 2= 28
c) 32. 25. \(\left(\dfrac{2}{3}\right)^2\) = 32. 25. \(\dfrac{2^2}{3^2}\) = 25. 22 = 27
d) \(\left(\dfrac{1}{3}\right)^2\) .\(\dfrac{1}{3}\) . 92 = \(\dfrac{1}{9}.\dfrac{1}{3}\). 92 = \(\dfrac{9}{3}\) = 31
a) Đúng vì 9 là số tự nhiên
b) Sai vì \( - 6\) là số nguyên âm, không phải là số tự nhiên.
c) Đúng vì \( - 3\) là số nguyên âm nên nó là số nguyên.
d) Đúng vì 0 là số nguyên
e) Đúng vì số 5 là số nguyên dương nên nó là số nguyên.
g) Đúng vì 20 là số tự nhiên.
\(-2\in N\rightarrow Sai:\) . -2 không thuộc Z
\(6\in N\rightarrow\) Đúng
\(0\in N\rightarrow\) Đúng
\(0\in Z\rightarrow\) Đúng
\(-1\in N\rightarrow Sai\) . -1 không thuộc N
\(-1\in Z\rightarrow\) Đúng
\(-2\in N\rightarrow Sai\) \(\left(-2\notin N\right)\)
\(6\in N\rightarrowĐúng\)
\(0\in N\rightarrowĐúng\)
\(0\in Z\rightarrowĐúng\)
\(-1\in N\rightarrow Sai\) \(\left(-1\notin N\right)\)
\(-1\in Z\rightarrowĐúng\)
Gọi ƯCLN (12n+1,30n+2) là d
\(\Rightarrow\left(12n+1\right)⋮d\)
\(\left(30n+2\right)⋮d\)
\(\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)
\(\Rightarrow60n+5-60n-4⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d=1\)
Vậy ƯCLN \(\left(12n+1,30n+2\right)=1\Leftrightarrow\dfrac{12n+1}{30n+2}\) là p/s tối giản \(\left(dpcm\right)\)
Gọi ước chung lớn nhất của 12n+1 và 30n+ 2 là d
\(\Rightarrow\) ( 12n+1) \(⋮\) d và ( 30n+2 ) \(⋮\) d
\(\Rightarrow\) \(\left[5\left(12n+1\right)-2\left(30n+2\right)\right]⋮d\)
\(\Leftrightarrow\) ( 60n + 5 - 60n - 4 ) \(⋮d\)
\(\Leftrightarrow\) 1 \(⋮\) d hay d= 1
Vậy ước chung lớn nhất của 12n+ 1 và 30n+2 là 1 hay \(\dfrac{12n+1}{30n+2}\) là phân số tối giản .
Phát biểu a : Đúng, vì \( - 4\) là số nguyên âm nên nó là số nguyên.
Phát biểu b: Đúng, vì 5 là số nguyên dương nên nó là số nguyên.
Phát biểu c: Đúng, vì 0 là số nguyên.
Phát biểu d: Sai, vì \( - 8\) là số nguyên âm, không phải là số tự nhiên.
Phát biểu e: Đúng, vì 6 là số tự nhiên.
Phát biểu f: Đúng, vì 0 là số tự nhiên.
\(A=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}=1+\dfrac{4}{n-3}\)
Để A là p/s tối giản thì \(\dfrac{4}{n-3}\) phải là p/s tối giản
\(=>n-3\) là số lẻ \(\Leftrightarrow n\) là số chẵn
Vậy \(n=2k\left(k\in Z\right)\)