Trong các số \(\sqrt{289};-\dfrac{1}{11};0,1313131....;0,010010001....\)số vô tỉ là số :
(A) \(\sqrt{289}\) (B) \(-\dfrac{1}{11}\) (C) \(0,131313.....\) (D) \(0,010010001....\)
Hãy chọn đáp án đúng ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\frac{289+4\sqrt{72}}{16}}+\sqrt{\frac{129}{16}+\sqrt{2}}\)
\(=\sqrt{\frac{288+2\times12\sqrt{2}+1}{4^2}}+\sqrt{\frac{128+2\sqrt{12}+1}{4^2}}\)
\(=\sqrt{\frac{\left(\sqrt{288}+1\right)^2}{4^2}}+\sqrt{\frac{\left(\sqrt{128}+1\right)^2}{4^2}}\)
\(=\frac{\sqrt{288}+1}{4}+\frac{\sqrt{128}+1}{4}\)
\(=\frac{12\sqrt{2}+8\sqrt{2}+2}{4}\)
\(=\frac{1+10\sqrt{2}}{2}\)
Ta có :
\(\sqrt{225}-\left(\dfrac{1}{\sqrt{13}}-1\right)=15-\dfrac{1}{\sqrt{13}}+1=16-\dfrac{1}{\sqrt{13}}\)
\(\sqrt{289}-\left(\dfrac{1}{\sqrt{14}}+1\right)=17-\dfrac{1}{\sqrt{14}}-1=16-\dfrac{1}{\sqrt{14}}\)
Vì 13 < 14 \(\Rightarrow\sqrt{13}< \sqrt{14}\)
\(\Rightarrow\dfrac{1}{\sqrt{13}}>\dfrac{1}{\sqrt{14}}\)
\(\Rightarrow16-\dfrac{1}{\sqrt{13}}< 16-\dfrac{1}{\sqrt{14}}\)
\(\Rightarrow\sqrt{225}-\left(\dfrac{1}{\sqrt{13}}-1\right)< \sqrt{289}-\left(\dfrac{1}{\sqrt{14}}+1\right)\)
Ta có: \(\sqrt{225}-\left(\dfrac{1}{\sqrt{13}}-1\right)\)
\(=15-\dfrac{1}{\sqrt{13}}+1\)
\(=\left(15+1\right)-\dfrac{1}{\sqrt{13}}\)
\(=16-\dfrac{1}{\sqrt{13}}\)
Và: \(\sqrt{289}-\left(\dfrac{1}{\sqrt{14}}+1\right)\)
\(=17-\dfrac{1}{\sqrt{14}}-1\)
\(=\left(17-1\right)-\dfrac{1}{\sqrt{14}}\)
\(=16-\dfrac{1}{\sqrt{14}}\)
Vì \(13< 14\Rightarrow\sqrt{13}< \sqrt{14}\Rightarrow\dfrac{1}{\sqrt{13}}>\dfrac{1}{\sqrt{14}}\Rightarrow-\dfrac{1}{\sqrt{13}}< -\dfrac{1}{\sqrt{14}}\Rightarrow16-\dfrac{1}{\sqrt{13}}< 16-\dfrac{1}{\sqrt{14}}\)
Hay \(\sqrt{225}-\left(\dfrac{1}{\sqrt{13}}-1\right)< \sqrt{289}-\left(\dfrac{1}{\sqrt{14}}+1\right)\)
Chúc bn học tốt
Trong các số trên, số 0,010010001.... là số vô tỉ.
Vậy đáp án đúng trong câu trên là câu D.