K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2021

Thách ai giải được hihihi

28 tháng 5 2017

\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}\)

28 tháng 5 2017

  Gọi A = \(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

=>  A = \(\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\)

      A < \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

      A < \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

      A < \(\frac{1}{2}-\frac{1}{100}\)

      A < \(\frac{49}{100}< \frac{50}{100}=\frac{1}{2}\)

  =>  A < \(\frac{1}{2}\)

<=>    \(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2}\)

3 tháng 1 2020

Ta có : \(\frac{1}{4^2}=\frac{1}{4.4}< \frac{1}{3.4}\)

           \(\frac{1}{5^2}=\frac{1}{5.5}< \frac{1}{4.5}\)     

           \(\frac{1}{6^2}=\frac{1}{6.6}< \frac{1}{5.6}\)

            ...

            \(\frac{1}{100^2}=\frac{1}{100.100}< \frac{1}{99.100}\)

\(\Rightarrow\)K<\(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

K<\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

K<\(\frac{1}{3}-\frac{1}{100}< \frac{1}{3}\)

\(\Rightarrow K< \frac{1}{3}\)  (1)

Ta có : \(\frac{1}{4^2}=\frac{1}{4.4}=\frac{1}{16}\)

            \(\frac{1}{5^2}=\frac{1}{5.5}>\frac{1}{5.6}\)

            \(\frac{1}{6^2}=\frac{1}{6.6}>\frac{1}{6.7}\)

             ...

             \(\frac{1}{99^2}=\frac{1}{99.99}>\frac{1}{99.100}\)

             \(\frac{1}{100^2}=\frac{1}{100.100}>\frac{1}{100.101}\)

\(\Rightarrow K>\frac{1}{16}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}+\frac{1}{100.101}\)

K>\(\frac{1}{16}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)

K>\(\frac{1}{16}+\frac{1}{5}-\frac{1}{101}>\frac{1}{5}\)  (2)

Từ (1) và (2)

\(\Rightarrow\frac{1}{5}< K< \frac{1}{3}\)

Vậy \(\frac{1}{5}< K< \frac{1}{3}.\)

1 tháng 4 2022

3 nhân 2/3 bao nhiêu

15 tháng 1

ko bít thì đừng lên tiếng nha

12 tháng 5 2017

\(Cm:\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)

Gọi biểu thức trên là A, ta có:

3A = 1-2/3+3/3^2-...-100/3^99

3A + A = [1-2/3+3/3^2-...-100/3^99] + [1/3-2/3^2+3/3^3-...-100/3^100]

4A = 1 - 1/3 + 1/3^2 - ... - 1/3^99 - 100/3^99 [1]

Gọi B = 1-1/3 + 1/3^2 - ... - 1/3^99

3B = 3 - 1 + 1/3 - 1/3^2 -...-1/3^2012

3B + B = [3-1+1/3-1/3^2-...-1/3^2012] + [1-1/3 + 1/3^2 - ... - 1/3^99]

4B = 3 - 1/3^99 

=> 4B < 3 => B < 1/4 [2]

Từ [1], [2] => 4A < B < 3/4 => A < 3/16 [đpcm]

MỎI TAY QUỚ

tk nha

12 tháng 5 2017

Lúc đặt câu hỏi, bạn bấm vào góc trên cùng bên trái để gõ phép tính đẹp. Ý của bạn có phải là:

\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)

11 tháng 9 2020

a) \(\frac{75^3.3^7}{81^4.5^6}=\frac{5^3.3^3.5^3.3^7}{\left(3^4\right)^4.5^6}=\frac{5^6.3^3.3^7}{3^{16}.5^6}=\frac{3^{10}}{3^{16}}=\frac{1}{3^6}=\frac{1}{729}\)
b) \(\frac{6^6.4^2}{3^{12}.2^8}=\frac{2^6.3^6.\left(2^2\right)^2}{3^{12}.2^8}=\frac{2^6.3^6.2^4}{3^{12}.2^8}=\frac{2^{10}.3^6}{3^{12}.2^8}=\frac{2^2.1}{3^6}=\frac{4}{729}\)
c) \(\frac{34^5.2^5}{2^{14}.17^5}=\frac{2^5.17^5.2^5}{2^{14}.17^5}=\frac{2^{10}}{2^{14}}=\frac{1}{2^4}=\frac{1}{16}\)

9 tháng 10 2020

 1/2 x 2 mũ n cộng 4 x 2 mũ n = 9 x 2 mũ n

13 tháng 10 2020

a/ 26176

b/ 8

c/472392

d/ Ko tính dc

Thấy mình đẳng cấp ko

Cho mình 10 k nhé