Tìm \(x\), \(y\), \(z\)biết :
\(2x=3y\)và \(3x=4z\), \(x+y-z=72\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
\(\frac{2x-4y}{3}=\frac{4z-3x}{2}=\frac{3y-2z}{4}.\)VÀ \(2x-y+z=27\)
\(\frac{2x-4y}{3}=\frac{4z-3x}{2}=\frac{3y-2z}{4}=\frac{6x-12y}{9}\)\(=\frac{8z-6x}{4}=\frac{12y-8z}{16}\)
\(=\frac{6x-12y+8z-6x+12y-8z}{9+4+16}\)\(=\frac{0}{29}=0\)
\(\Rightarrow2x=4y\Rightarrow\frac{x}{4}=\frac{y}{2}\)
\(\Rightarrow4z=3x\Rightarrow\frac{z}{3}=\frac{x}{4}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\)
ÁP DỤNG TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU TA CÓ:
\(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}=\frac{2x-y+z}{8-2+3}\)\(=\frac{27}{9}=3\)
\(\frac{x}{4}=3\Rightarrow x=12\)
\(\frac{y}{2}=3\Rightarrow y=6\)
\(\frac{z}{3}=3\Rightarrow z=9\)
VẬY X = 12, Y = 6, Z = 9
b) Ta có: \(\text{10x=6y=5z}\Rightarrow\frac{10x}{30}=\frac{6y}{30}=\frac{5z}{30}\Leftrightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\) và \(x+y-z=24\)
Áp dụng t/c dãy tỉ số = nhau, ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}=\frac{x+y-z}{3+5-6}=\frac{24}{2}=12\)
Khi đó: \(\frac{x}{3}=12\Rightarrow x=36\)
\(\frac{y}{5}=12\Rightarrow y=60\)
\(\frac{z}{6}=12\Rightarrow z=72\)
Vậy\(x=36\) :\(y=60\) \(z=72\)
minh lam cau b) roi dc co 2/3 thoy ban tham khao nhe phan () la minh giai thich nha dung viet vo bai !!
2x=3y ; 5y = 7z
+) 10x=15y=21z ( Quy dong)
+)10x/210 = 15y/210 = 21z/210 ( BC)
+) x/21 = y/14 = z/10 ( Rut gon)
+) 3x/63 = 7y/98 = 5z/50 = 3x-7y+ 5z / 63 - 98 - 50 = -30/14 = -2
+ x/21 = 2 => ............ phan nay minh chua xong neu xong thi minh pm not cho
Ta có: 2x=3y-2x
=> 3y=4x
Lại có: 2x=4z-3x
=>4z=5x
=>\(\frac{y}{4}\)= \(\frac{x}{3}\) và \(\frac{x}{4}\) = \(\frac{z}{5}\)
=> \(\frac{x}{12}\)= \(\frac{y}{16}\)= \(\frac{z}{15}\)= \(\frac{x-y+z}{12-16-15}\)= \(\frac{44}{11}\)= 4
=> x=48
y=64
z=60
\(2x=3y=4z\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)( chia cả 3 vế cho BCNN hay 12 )
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{3x-2y+z}{3\cdot6-2\cdot4+3}=\frac{26}{13}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{6}=2\\\frac{y}{4}=2\\\frac{z}{3}=2\end{cases}\Rightarrow\hept{\begin{cases}x=12\\y=8\\z=6\end{cases}}}\)
Vậy....
+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)
\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)
2x=3y suy ra y=2/3.x
3x=4z suy ra z=3/4.x
thay 2 cái trên vào x+y-z=72 ta có: x+2/3.x-3/4.x=72
x(1+2/3-3/4)=72
x=864/11
thay x=864/11 vào y=2/3x và z=3/4x ta có:
y=2/3.864/11=576/11
z=3/4.864/11=648/11
vậy :...
Ta có: \(\hept{\begin{cases}2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\Leftrightarrow\frac{x}{12}=\frac{y}{8}\\3x=4z\Leftrightarrow\frac{x}{4}=\frac{z}{3}\Leftrightarrow\frac{x}{12}=\frac{z}{9}\end{cases}}\)
\(\Rightarrow\frac{x}{12}=\frac{y}{8}=\frac{z}{9};x+y-z=72\)
Tính chất dãy tỉ số bằng nhau:
\(\frac{x}{12}=\frac{y}{8}=\frac{z}{9}=\frac{x+y-z}{12+8-9}=\frac{72}{11}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{12}=\frac{72}{11}\Leftrightarrow x=\frac{12.72}{11}=\frac{864}{11}\\\frac{y}{8}=\frac{72}{11}\Leftrightarrow y=\frac{72.8}{11}=\frac{576}{11}\\\frac{z}{9}=\frac{72}{11}\Leftrightarrow z=\frac{72.9}{11}=\frac{648}{11}\end{cases}}\)
Vậy \(\left(x,y,z\right)=\left(\frac{864}{11};\frac{576}{11};\frac{648}{11}\right)\)