Chọn đáp án đúng :
Bất phương bậc nhất \(2x-1>1\) có tập nghiệm biểu diễn bởi hình vẽ sau :
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bất phương trình bậc nhất một ẩn có tập nghiệm biểu diễn bởi hình vẽ là:
3x – 15 < 0
Bất phương trình bậc nhất một ẩn có tập nghiệm biểu diễn bởi hình vẽ là:
2x – 8 ≥ 0
Ta vẽ các đường thẳng 2x + 3y = 6 (d1); 2x – 3y = 3 (d2); x = 0 (trục tung).
Điểm B(1; 0) có tọa độ thỏa mãn tất cả các bất phương trình trong hệ nên ta gạch đi các nửa mặt phẳng bờ (d1); (d2) và trục tung không chứa điểm B.
Miền không bị gạch chéo (tam giác MNP, kể cả cạnh MP và NP, không kể cạnh MN) là miền nghiệm của hệ bất phương trình đã cho.
Bước 1: Mở trang Geoebra
Bước 2: Nhập bất phương trình \(x - 2y + 3 \le 0\) vào ô
Và bấm enter, màn hình sẽ hiển thị như hình dưới. Miền nghiệm của bất phương trình \(x - 2y + 3 \le 0\) là miền được tô màu. Đường nét liền biểu thị miền nghiệm chứa các điểm nằm trên đường thẳng \(x - 2y + 3 = 0\).
Bước 3: Tiếp tục nhập từng bất phương trình còn lại như sau:
x+3y>-2; \(x \le 0\)(x<=0). Khi đó màn hình sẽ hiển thị như hình dưới.
Miền nghiệm của hệ là miền được tô màu đậm nhất. Đường nét đứt biểu thị miền nghiệm không chứa các điểm nằm trên đường thẳng \(x + 3y = - 2\). Đường nét liền \(x = 0\) (trục Oy) biểu thị các điểm nằm trên trục Oy cũng thuộc miền nghiệm.
Ta có: 2x ≤ 16 ⇔ x ≤ 8
x + 2 ≤ 10 ⇔ x ≤ 8
Như vậy cả hai bạn đều phát biểu đúng.
Biểu diễn hình học tập nghiệm của bất phương trình bậc nhất hai ẩn sau: 3(x - 1) + 4(y - 2) < 5x - 3
3(x – 1) + 4(y – 2) < 5x – 3
⇔ 3x – 3 + 4y – 8 < 5x – 3
⇔ -2x + 4y < 8
⇔ x – 2y > –4 ( chia cả hai vế cho -2 < 0) (2)
Biểu diễn tập nghiệm trên mặt phẳng tọa độ:
– Vẽ đường thẳng x – 2y = –4.
– Thay tọa độ (0; 0) vào (2) ta được: 0 + 0 > –4 đúng
⇒ (0; 0) là một nghiệm của bất phương trình.
Vậy miền nghiệm của bất phương trình là nửa mặt phẳng chứa gốc tọa độ không kể bờ với bờ là đường thẳng x – 2y = –4
Biểu diễn hình học tập nghiệm của bất phương trình bậc nhất hai ẩn sau: -x + 2 + 2(y - 2) < 2(1 - x)
–x + 2 + 2(y – 2) < 2(1 – x)
⇔ –x + 2 + 2y – 4 < 2 – 2x
⇔ x + 2y < 4 (1)
Biểu diễn tập nghiệm trên mặt phẳng tọa độ :
– Vẽ đường thẳng x + 2y = 4.
– Thay tọa độ (0; 0) vào (1) ta được 0 + 0 < 4
⇒ (0; 0) là một nghiệm của bất phương trình.
Vậy miền nghiệm của bất phương trình là nửa mặt phẳng chứa gốc tọa độ không kể bờ với bờ là đường thẳng x + 2y = 4 (miền không bị gạch).
Giaỉ bất phương trình:
\(2x-1>1\\ < =>2x>1+1\\ =>2x>2\\ =>x>\dfrac{2}{2}\\ < =>x>1\)
Vậy: tập nghiệm của bất phương trình là S= \(\left\{x|x>1\right\}\)
Biễu diễn tập nghiệm:
Chọn hình B.