giải phương trình
\([2x+1]=[x-2]+5\)
chú ý: \([\)\(]\)là gt tuyệt đối
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3-x+5=2x-4\)
\(\Rightarrow-x-2x=-4-5-3\)
\(\Rightarrow-3x=-12\)
\(\Rightarrow x=4\)
\(2\left|1-x\right|=2018\)
\(\Rightarrow\left|1-x\right|=1009\)
\(\Leftrightarrow\orbr{\begin{cases}1-x=1009\\1-x=-1009\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1008\\x=1010\end{cases}}\)
CM: 5x^2 +15x+20>0
Ta có: 5x^2 +15x +20
= 5( x^2 + 3x +4)
=5[(x^2 + 2.x.3/2 +9/4) -9/4 +4 ]
=5(x+3/2)^2 -7/4
Vì (x+3/2)^2 >0 với mọi x
=>5(x+3/2)^2 >0 với mọi x
=> 5(x+3/2)^2 - 7/4 >0 với mọi x
\(x\ge-\frac{1}{2}\Rightarrow3x-2x-1=0\Rightarrow x=1\)
\(x< \frac{-1}{2}\Rightarrow3x+2x+1\Rightarrow x=-\frac{1}{5}\left(loai\right)\)
\(3x-|2x-1|=2\Leftrightarrow|2x-1|=2-3x\)
\(\Rightarrow-2x+1=2-3x\)hoặc \(-2x+1=3x-2\)
\(\Rightarrow1x+1=2\)hoặc \(-5x+1=-2\)
\(\Rightarrow x=1\)hoặc\(x=\frac{5}{3}\)
1
a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9
(9+x)= -9-x khi 9+x <0 hoặc x <-9
1)pt 9+x=2 với x >_ -9
<=> x = 2-9
<=> x=-7 thỏa mãn điều kiện (TMDK)
2) pt -9-x=2 với x<-9
<=> -x=2+9
<=> -x=11
x= -11 TMDK
vậy pt có tập nghiệm S={-7;-9}
các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd
nhu cau o trên mk lam 9+x>_0 hoặc x>_0
với số âm thi -2x>_0 hoặc x <_ 0 nha
bài 1
\(\frac{x-1}{x+3}>0\) \(\left(x\ne-3\right)\)
TH1 \(\hept{\begin{cases}x-1>0\\x+3< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>1\\x< -3\end{cases}}\)(vô lí)
TH2 \(\hept{\begin{cases}x-1< 0\\x+3>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x< 1\\x>-3\end{cases}}\)\(\Rightarrow-3< x< 1\)
bài 2 . với dạng này ta áp dụng bđt \(|x|< A\Leftrightarrow\orbr{\begin{cases}x< -A\\x>A\end{cases}}\)
|x - 5| >2
\(\Leftrightarrow\orbr{\begin{cases}x-5>2\\x-5< -2\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x>7\\x< 3\end{cases}}\)
#mã mã#
Copy trên Wolframalpha nè:
Mã mở
Open code
Open code
Mã mở
Mã mở
nếu \(x< -\dfrac{1}{2}\) thì \(\left|2x+1\right|=-2x-1\\ \left|x-2\right|=2-x\)
nếu \(-\dfrac{1}{2}\le x< 2\) thì \(\left|2x+1\right|=2x+1\\ \left|x-2\right|=2-x\)
nếu \(x\ge2\) thì \(\left|2x+1\right|=2x+1\\ \left|x-2\right|=x-2\)
từ 3 điều kiện trên, ta có:
\(\left[{}\begin{matrix}-2x-1=2-x+5\left(x< -\dfrac{1}{2}\right)\\2x+1=2-x+5\left(-\dfrac{1}{2}\le x< 2\right)\\2x+1=x-2+5\left(x\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-8\left(\text{nhận}\right)\\x=2\left(loại\right)\\x=3\left(\text{nhận}\right)\end{matrix}\right.\)
vậy phương trình có tập nghiệm là S={-8;3}