Tìm \(x\), biết :
a) \(x+5x^2=0\)
b) \(x+1=\left(x+1\right)^2\)
c) \(x^3+x=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x+25=15\)
\(\Leftrightarrow24x=-10\)
hay \(x=-\dfrac{5}{12}\)
b) Ta có: \(2x^3-50x=0\)
\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
c) Ta có: \(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)
\(\Leftrightarrow x^2+8x-9=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\)
d) Ta có: \(x^3-x=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
e) Ta có: \(27x^3-27x^2+9x-1=1\)
\(\Leftrightarrow\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2-1^3=1\)
\(\Leftrightarrow\left(3x-1\right)^3=1\)
\(\Leftrightarrow3x-1=1\)
\(\Leftrightarrow3x=2\)
hay \(x=\dfrac{2}{3}\)
\(a,\left(x+2\right)^2-9=0\\ \Leftrightarrow\left(x+2-3\right)\left(x+2+3\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\\ Vậy\dfrac{ }{ }S=\left\{1;-5\right\}\)
\(b,x^2-2x+1=25\\ \Leftrightarrow\left(x-1\right)^2=25\\ \Leftrightarrow\left(x-1\right)^2-25=0\\ \Leftrightarrow\left(x-1-5\right)\left(x-1+5\right)=0\\ \Leftrightarrow\left(x-6\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\\ Vậy\dfrac{ }{ }S=\left\{6;-4\right\}\)
\(c,\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\\ \Leftrightarrow25x^2+10x+1-25x^2+9=30\\ \Leftrightarrow25x^2+10x-25x^2=30-1-9\\ \Leftrightarrow10x=20\\ \Leftrightarrow x=2\\ Vậy\dfrac{ }{ }S=\left\{2\right\}\)
\(d,\left(x-1\right)\left(x^2+x+1\right)+x\left(x+2\right)\left(2-x\right)=5\\ \Leftrightarrow x^3-1-x\left(x^2-4\right)=5\\ \Leftrightarrow x^3-1-x^3+4x=5\\ \Leftrightarrow x^3-x^3+4x=5+1\\ \Leftrightarrow4x=6\\ \Leftrightarrow x=\dfrac{3}{2}\\ Vậy\dfrac{ }{ }S=\left\{\dfrac{3}{2}\right\}\)
a: =>(x+2-3)(x+2+3)=0
=>(x-1)(x+5)=0
=>x=1 hoặc x=-5
b: =>(x-1)^2=25
=>x-1=5 hoặc x-1=-5
=>x=-4 hoặc x=6
c: =>25x^2+10x+1-25x^2+9=30
=>10x+10=30
=>x+1=3
=>x=2
d: =>x^3-1-x(x^2-4)=5
=>x^3-1-x^3+4x=5
=>4x=6
=>x=3/2
`@` `\text {Ans}`
`\downarrow`
`a,`
`(x - 2)(x - 3) =0`
`<=>`\(\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0+2\\x=0+3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy, `S = {2; 3}`
`b,`
`x^2 - 5x = 0`
`<=> x(x - 5) = 0`
`<=>`\(\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\x=0+5\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
Vậy, `S = {0; 5}`
`c,`
`x^2 - 9 = 0`
`<=> x^2 = 0 + 9`
`<=> x^2 = 9`
`<=> x^2 = (+-3)^2`
`<=> x = +-3`
Vậy, `S = {3; -3}`
`d,`
`4x^2 - 25 = 0`
`<=> 4x^2 = 25`
`<=> x^2 = 25/4`
`<=> x^2 = (+-5/2)^2`
`<=> x = +-5/2`
Vậy,` S = {5/2; -5/2}.`
a: =>x-2=0 hoặc x-3=0
=>x=2 hoặc x=3
b: =>x(x-5)=0
=>x=0 hoặc x=5
c: =>(x-3)(x+3)=0
=>x=3 hoặc x=-3
d: =>(2x-5)(2x+5)=0
=>x=5/2 hoặc x=-5/2
a)
\(x\left(x-2\right)-x+2=0\\ \Leftrightarrow-x\left(2-x\right)+\left(2-x\right)=0\\ \Leftrightarrow\left(2-x\right)\left(1-x\right)=0\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}2-x=0\\1-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Vậy...
b)
\(x^2\left(x^2+1\right)-x^2-1=0\\ \Leftrightarrow x^2\left(x^2+1\right)-\left(x^2+1\right)=0\\ \Leftrightarrow\left(x^2+1\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=0\\x^2-1=0\end{matrix}\right.\)
Vì \(x^2+1\) luôn lớn hơn 0 với mọi x
\(\Rightarrow x^2-1=0\\ \Leftrightarrow x=1\)
Vậy...
c)
\(5x(x-3)^2-5(x-1)^3+15(x+2)(x-2)=5\)
\(\Leftrightarrow x(x-3)^2-(x-1)^3+3(x+2)(x-2)=1\)
\(\Leftrightarrow x(x^2-6x+9)-(x^3-3x^2+3x-1)+3(x^2-4)=1\)
\(\Leftrightarrow 6x-12=0\Rightarrow x=2\)
\(9,\left(2x-5\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(2x-5-x-1\right)\left(2x-5+x+1\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\3x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(S=\left\{6;\dfrac{4}{3}\right\}\)
\(10,\left(x+3\right)^2-x^2=45\)
\(\Leftrightarrow x^2+6x+9-x^2-45=0\\ \Leftrightarrow6x=36\\ \Leftrightarrow x=6\)
Vậy \(S=\left\{6\right\}\)
\(11,\left(5x-4\right)^2-49x^2=0\\ \Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\\ \Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\\ \Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(S=\left\{-2;\dfrac{1}{3}\right\}\)
\(12,16\left(x-1\right)^2-25=0\\ \Leftrightarrow4^2\left(x-1\right)^2-5^2=0\\ \Leftrightarrow\left[4\left(x-1\right)\right]^2-5^2=0\\ \Leftrightarrow\left(4x-4\right)^2-5^2=0\\ \Leftrightarrow\left(4x-4-5\right)\left(4x-4+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-9=0\\4x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{1}{4};\dfrac{9}{4}\right\}\)
a) \(\Rightarrow\dfrac{1}{3}x\left(x-2\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow\left(x+5\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
c) \(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
e) \(\Rightarrow\left(x+2\right)\left(x+2-x+2\right)=0\Rightarrow\left(x+2\right).4=0\Rightarrow x=-2\)
f) \(\Rightarrow x\left(2x-3\right)+2\left(2x-3\right)=0\Rightarrow\left(2x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)
g) \(\Rightarrow2\left(3x-2\right)^2-\left(3x-2\right)\left(3x+2\right)=0\Rightarrow\left(3x-2\right)\left(3x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)
h) \(\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)
i) \(\Rightarrow4x\left(x+1\right)+5\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(4x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{5}{4}\end{matrix}\right.\)
a: \(\text{Δ}=\left(-5\right)^2-4\left(-2m+5\right)\)
=25+8m-20=8m+5
Để phương trình có nghiệm kép thì 8m+5=0
=>m=-5/8
=>x^2-5x+25/4=0
=>x=5/2
b: \(\text{Δ}=\left(2m-1\right)^2-4\left(m^2-2m+3\right)\)
\(=4m^2-4m+1-4m^2+8m-12=4m-11\)
Để phương trình có nghiệm kép thì 4m-11=0
=>m=11/4
=>x^2-9/2x+81/16=0
=>x=9/4
c: TH1: m=-3
=>-(2*(-3)+1)x+(-3-1)=0
=>-(-5x)-4=0
=>5x-4=0
=>x=4/5(nhận)
TH2: m<>-3
\(\text{Δ}=\left(2m+1\right)^2-4\left(m+3\right)\left(m-1\right)\)
\(=4m^2+4m+1-4\left(m^2+2m-3\right)\)
\(=4m^2+4m+1-4m^2-8m+12=-4m+13\)
Để phương trình có nghiệm kép thì -4m+13=0
=>m=13/4
=>25/4x^2-15/2x+9/4=0
=>(5/2x-3/2)^2=0
=>x=3/2:5/2=3/2*2/5=3/5
a) Ta có: \(2x^3+5x^2-3x=0\)
\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)
\(\Leftrightarrow x\left(2x^2+6x-x-3\right)=0\)
\(\Leftrightarrow x\left[2x\left(x+3\right)-\left(x+3\right)\right]=0\)
\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{0;-3;\dfrac{1}{2}\right\}\)
b) Ta có: \(2x^3+6x^2=x^2+3x\)
\(\Leftrightarrow2x^2\left(x+3\right)=x\left(x+3\right)\)
\(\Leftrightarrow2x^2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{0;-3;\dfrac{1}{2}\right\}\)
c) Ta có: \(x^2+\left(x+2\right)\left(11x-7\right)=4\)
\(\Leftrightarrow x^2+11x^2-7x+22x-14-4=0\)
\(\Leftrightarrow12x^2+15x-18=0\)
\(\Leftrightarrow12x^2+24x-9x-18=0\)
\(\Leftrightarrow12x\left(x+2\right)-9\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(12x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\12x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\12x=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy: \(S=\left\{-2;\dfrac{3}{4}\right\}\)
Tìm x,biết:
a/ x + 5x2 =0
⇔x ( 1 + 5x ) = 0
\(\Leftrightarrow\) x = 0 hoặc 1 + 5x = 0
1) x = 0
2) 1+ 5x = 0 \(\Leftrightarrow\) x = \(\frac{-1}{5}\)
Vậy: S = \(\left\{0;\frac{-1}{5}\right\}\)
b/x+1=(x+1)2
\(\Leftrightarrow\) (x+1) - (x+1)2 = 0
\(\Leftrightarrow\) ( x+ 1)(1-x-1) = 0
\(\Leftrightarrow\) (x+1).(-x) = 0
\(\Leftrightarrow\) x+1 = 0 hoặc x = 0
\(\Leftrightarrow\) x= -1 ; 0
Vậy: S=\(\left\{-1;0\right\}\)
c/ x3+x=0
\(\Leftrightarrow\) x(x2 + 1) = 0
\(\Leftrightarrow\) x = 0 hoặc x2 + 1 = 0
Ta có : x2 + 1 \(\ge\) 0 vs mọi x
Vậy: S = \(\left\{0\right\}\)
d/5x(x−2)−(2−x)=0
\(\Leftrightarrow\) 5x(x-2) + (x - 2) = 0
\(\Leftrightarrow\) (x - 2)(5x+1) = 0
\(\Leftrightarrow\) x - 2 = 0 hoặc 5x+ 1 = 0
\(\Leftrightarrow\) x = 2 hoặc x = \(\frac{-1}{5}\)
Vậy: S = \(\left\{\frac{-1}{5};2\right\}\)
g/ x(x−4)+(x−4)2=0
⇔ (x - 4)( x+x-4) = 0
\(\Leftrightarrow\) x - 4 = 0 hoặc 2x-4=0
\(\Leftrightarrow\) x = 4 hoặc x = 2
Vậy: S= \(\left\{2;4\right\}\)
h/ x2−3x=0
⇔x (x-3) = 0
\(\Leftrightarrow\) x = 0 hoặc x = 3
Vậy: S = \(\left\{0;3\right\}\)
Vậy: S= \(\left\{0;3\right\}\)
i/4x(x+1)=8(x+1)
⇔4x(x+1)-8(x+1) = 0
\(\Leftrightarrow\) 4(x+1) (x - 2) = 0
\(\Leftrightarrow\) x+1 = 0 hoặc x - 2 = 0
\(\Leftrightarrow\) x= -1 hoặc x = 2
Vậy: S=\(\left\{-1;2\right\}\)
a) \(x+5x^2=0\)
<=>\(x\left(1+5x\right)=0\)
+) \(x=0\) (TM)
+)\(1+5x=0\)
<=>\(5x=-1\)
<=>\(x=\dfrac{-1}{5}\) (TM)
Vậy \(x\) có 2 giá trị: \(x=\dfrac{-1}{5}\); \(x=0\)
b)\(x+1=\left(x+1\right)^2\)
<=>\(x+1-\left(x+1\right)^2=0\)
<=>\(\left(x+1\right)\left(1-x-1\right)=0\)
<=>\(\left(x+1\right)\left(-x\right)=0\)
+)\(x+1=0\)
<=>\(x=-1\) (TM)
+)\(-x=0\)
<=>\(x=0\) (TM)
Vậy \(x\) có 2 giá trị : \(x=-1\); \(x=0\)
c) \(x^3+x=0\)
<=> \(x\left(x^2+1\right)=0\)
+) \(x=0\) (TM)
+) \(x^2+1=0\)
<=>\(x^2=-1\)
Ta có: \(x^2\) >= 0, \(-1< 0\). Mà vế trái = vế phải
=> \(x^2=-1\) ( Vô nghiệm)
Vậy \(x=0\)
a) \(x+5x^2=0\)
\(x\left(1+5x\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(1+5x=0\)
\(\Leftrightarrow x=0\) hoặc \(x=\dfrac{-1}{5}\)
b) \(x+1=\left(x+1\right)^2\)
\(\Leftrightarrow x+1-\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)\left[1-\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(1-x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)-x=0\)
\(\Leftrightarrow x+1=0\) hoặc \(-x=0\)
\(\Leftrightarrow x=-1\) hoặc \(x=0\)