Với \(x< 0;y< 0\), biểu thức \(x\sqrt{\dfrac{x}{y^3}}\) được biến đổi thành
(A) \(\dfrac{x}{y^2}\sqrt{xy}\) (B) \(\dfrac{x}{y}\sqrt{xy}\) (C) \(-\dfrac{x}{y}\sqrt{xy}\) (D) \(-\dfrac{x}{y}\sqrt{xy}\)
Hãy chọn đáp án đúng ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(-x^2+4x-7\)
\(=-\left(x^2-4x+7\right)\)
\(=-\left(x^2-2.x.2+2^2-4+7\right)\)
\(=-\left[\left(x-2\right)^2+3\right]\)
\(=-\left(x-2\right)^2-3\)
Do \(-\left(x-2\right)^2\le0\) với \(\forall x\)
\(\Rightarrow-\left(x-2\right)^2-3\le-3< 0\)
\(\Rightarrow-x^2+4x-7< 0\) (đpcm)
câu b,c đề sai bạn nhé!
1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)
2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)
3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0
4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)
5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)
1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)
=> Đpcm
2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)
Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)
=> Đpcm
3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)
\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)
\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)
=> Đpcm
4,5 làm tương tự
a. \(x^2+3x+5\)
\(=x^2+2.x^2.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
=> đpcm
hơi ngán dạng này :((((
a, \(x^2-3x+5=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+5=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\forall x\)
b,
\(x^2-\frac{1}{3}x+\frac{5}{4}=x^2-2.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{5}{4}=\left(x-\frac{1}{6}\right)^2+\frac{11}{9}>0\forall x\)
c,
\(x-x^2-3=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{4}-3=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}< 0\forall x\)d,
\(x-2x^2-\frac{5}{2}=-2\left(x^2-\frac{1}{2}x+\frac{5}{4}\right)=-2\left(x^2-2.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}+\frac{5}{4}\right)=-2\left[\left(x-\frac{1}{4}\right)^2+\frac{19}{16}\right]=-2\left(x-\frac{1}{4}\right)^2-\frac{19}{8}< 0\forall x\)P/s : ko chắc lém :)))
x\(\sqrt{\dfrac{x}{y^3}}\)=x\(\sqrt{\dfrac{xy}{y^4}}\)=x\(\sqrt{\dfrac{xy}{\left(y^2\right)^2}}\)=\(\dfrac{x}{y^2}\sqrt{xy}\)(y2>0)
vậy (A) là đáp án đúng.
\(x\sqrt{\dfrac{x}{y^3}}=x\sqrt{\dfrac{xy}{y^4}}=x\sqrt{\dfrac{x}{\left(y2\right)^2}}=\dfrac{x}{y^2}\sqrt{xy}\left(y^2>0\right)\)
\(Vậy\) \(đáp\) \(án\) \(đúng\) \(là\) \(A.\)