K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

Đọc không ra. Học cách viết đề đi b

8 tháng 3 2021

Áp dụng bất đẳng thức Côsi cho các số dương $x, y, z$, ta được:$x^{3}+y^{2} \geqslant 2 \sqrt{x^{3} \cdot y^{2}}=2 x y \cdot \sqrt{x}$$y^{3}+z^{2} \geqslant 2 \sqrt{y^{3} \cdot z^{2}}=2 y z \cdot \sqrt{y}$$z^{3}+x^{2} \geqslant 2 \sqrt{z^{3} \cdot x^{2}}=2 z x \cdot \sqrt{z}$Khi đó BĐT đã cho trở thành:$\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{2 \sqrt{x}}{2 x y \sqrt{x}}+\dfrac{2 \sqrt{y}}{2 y z \sqrt{y}}+\dfrac{2 \sqrt{z}}{2 z x \sqrt{z}}=\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} (1)$Mặt khác ta có:$\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}} \geqslant \dfrac{2}{x y} \Rightarrow \dfrac{1}{x y} \leqslant \dfrac{1}{2}\left(\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}\right)$

CMTT: $\dfrac{1}{y z} \leq \dfrac{1}{2}\left(\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}\right) ; \dfrac{1}{z x} \leqslant \dfrac{1}{2}\left(\dfrac{1}{z^{2}}+\dfrac{1}{x^{2}}\right)$Suy ra: $\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}(2)$Từ  $(1)$ và $(2)$ ta được: $\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}$Dấu " $="$ xảy ra $\Leftrightarrow x=y=z=1$

 

8 tháng 3 2021

Áp dụng bất đẳng thức Côsi cho các số dương $x, y, z$, ta được:

$x^{3}+y^{2} \geqslant 2 \sqrt{x^{3} \cdot y^{2}}=2 x y \cdot \sqrt{x}$

$y^{3}+z^{2} \geqslant 2 \sqrt{y^{3} \cdot z^{2}}=2 y z \cdot \sqrt{y}$

$z^{3}+x^{2} \geqslant 2 \sqrt{z^{3} \cdot x^{2}}=2 z x \cdot \sqrt{z}$

Khi đó BĐT đã cho trở thành:

$\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{2 \sqrt{x}}{2 x y \sqrt{x}}+\dfrac{2 \sqrt{y}}{2 y z \sqrt{y}}+\dfrac{2 \sqrt{z}}{2 z x \sqrt{z}}=\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} (1)$

Mặt khác ta có:

$\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}} \geqslant \dfrac{2}{x y} \Rightarrow \dfrac{1}{x y} \leqslant \dfrac{1}{2}\left(\dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}\right)$

CMTT: $\dfrac{1}{y z} \leq \dfrac{1}{2}\left(\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}\right) ; \dfrac{1}{z x} \leqslant \dfrac{1}{2}\left(\dfrac{1}{z^{2}}+\dfrac{1}{x^{2}}\right)$

Suy ra: $\dfrac{1}{x y}+\dfrac{1}{y z}+\dfrac{1}{z x} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}(2)$

Từ  $(1)$ và $(2)$ ta được: $\dfrac{2 \sqrt{x}}{x^{3}+y^{2}}+\dfrac{2 \sqrt{y}}{y^{3}+z^{2}}+\dfrac{2 \sqrt{z}}{z^{3}+x^{2}} \leqslant \dfrac{1}{x^{2}}+\dfrac{1}{y^{2}}+\dfrac{1}{z^{2}}$

Dấu " $="$ xảy ra $\Leftrightarrow x=y=z=1$

30 tháng 7 2018

1) \(A=x^2+y^2=\left(x+y\right)^2-2xy\)

Do \(x+y=1\)nên \(A=1-2xy\)

Xài Cosi ngược: \(2xy\le\frac{\left(x+y\right)^2}{2}\)\(\Rightarrow A=1-2xy\ge1-\frac{\left(x+y\right)^2}{2}=1-\frac{1}{2}=\frac{1}{2}\)

\(\Rightarrow A\ge\frac{1}{2}\). Vậy Min A = 1/2. Đẳng thức xảy ra <=> \(x=y=\frac{1}{2}\).

3 tháng 8 2017

\(x-x^2-1\\ =-\left(x^2-x+1\right)\\ =-\left(x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\right)\\ =-\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\\ \left(x-\dfrac{1}{2}\right)^2\ge0\forall x\in R\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\in R\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\in R\\ \Rightarrow-\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]< 0\forall x\in R\\ \Leftrightarrow x-x^2-1< 0\forall x\in R\)

Vậy \(x-x^2-1< 0\forall x\in R\)

3 tháng 8 2017

Ta có: \(x-x^2-1\)

\(=-\left(x^2-x+1\right)\)

\(=-\left(x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\right)\)

\(=-\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)

\(=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\)

\(-\left(x-\dfrac{1}{2}\right)^2\le0\forall x\in R\)

\(\Rightarrow-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le\dfrac{-3}{4}< 0\forall x\in R\)

-> ĐPCM.

21 tháng 5 2019

\(\frac{2+x}{1+x}+\frac{1-2y}{1+2y}=\left(\frac{2+x}{1+x}-1\right)+\left(\frac{1-2y}{1+2y}+1\right)\)

\(=\frac{2+x-1-x}{x+1}+\frac{1-2y+1+2y}{1+2y}\)

\(=\frac{1}{x+1}+\frac{2}{1+2y}=\frac{1}{x+1}+\frac{1}{\frac{1}{2}+y}\ge\frac{4}{x+y+\frac{3}{2}}\ge\frac{4}{\frac{7}{2}}=\frac{8}{7}\)

Dấu "=" xảy ra khi \(x=\frac{3}{4};y=\frac{5}{4}\)