tìm n thuộc N biết 1+3+5+... (2n-1)=231
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 1 + 2 + 3 + ... + n = 231
=> \(\frac{\left(1+n\right).n}{2}=231\)
=> (1 + n).n = 231.2
=> (1 + n).n = 462 = 21.22
=> n = 21
Vậy n = 21
b) 11 + 12 + ... + n = 176
=> \(\frac{11+n}{2}.\left(\frac{n-11}{1}+1\right)=176\)
=> (11 + n).(n - 10) = 176.2
=> (11 + n).(n - 10) = 352 = 32.11
=> n - 10 = 11; 11 + n = 32
=> n = 21
Vậy n = 21
c) 1 + 3 + 5 + ... + (2n - 1) = 169
\(\frac{\left(2n-1+1\right)}{2}.\left(\frac{2n-1-1}{2}+1\right)=169\)
=> \(\frac{2n}{2}.\left(\frac{2n-2}{2}+1\right)=169\)
=> n.(n - 1 + 1) = 169
=> n2 = 169 = 132
Vậy n = 13
![](https://rs.olm.vn/images/avt/0.png?1311)
nhan xet
n=1=>1=1=1^2
n=2=>1+3=4=2^2
n=3=>1+3+5=9=3^2
n=4=>1+3+7=16=4^2
n=2n-1=>1+3+7+....+(2n-1)=169=13^2
n=13
![](https://rs.olm.vn/images/avt/0.png?1311)
3a)
1+2+3+4+5+...+n=231
=> (1+n).n:2=231
(1+n).n=231.2
(1+n).n=462
(1+n).n=2.3.7.11
(1+n).n=(2.11).(3.7)
(1+n).n=22.21
=>n=21
gọi d là ước chung của n+3 và 2n+1 . Ta có (2n+6)chia hết cho d và 2n+5 chia hết cho d suy ra (2n+6)-(2n+5)chia hết cho d suy ra 1chia hết cho d vậy d=1 nhớ kết bạn với mình nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 :
Gọi số đó là a (a \(\in\) N)
Ta có :
a = 3k + 1\(\Rightarrow\)a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3\(\Rightarrow\)a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5\(\Rightarrow\)a + 2 = 7k + 7 chia hết cho 7
\(\Rightarrow\)a + 2 chia hết cho 3 ; 5 ; 7 \(\Rightarrow\)a + 2 \(\in\) BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
\(\Rightarrow\)a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
\(\Rightarrow\)a + 2 = 105 \(\Rightarrow\)a = 105 - 2 = 103
Bài 1 :
Gọi số đó là a (a ∈ N)
Ta có :
a = 3k + 1⇒a + 2 = 3k + 3 chia hết cho 3
a = 5k + 3⇒a + 2 = 5k + 5 chia hết cho 5
a = 7k + 5⇒a + 2 = 7k + 7 chia hết cho 7
⇒a + 2 chia hết cho 3 ; 5 ; 7 ⇒a + 2 ∈ BC(3 ; 5 ; 7)
Mà a nhỏ nhất nên a + 2 nhỏ nhất
⇒a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)
⇒a + 2 = 105
![](https://rs.olm.vn/images/avt/0.png?1311)
$1+3+5+...+(2n+1)=169$
Số các số hạng của tổng đó là:
$[(2n+1)-1]:2+1=n+1$ (số)
Khi đó, tổng các số trên bằng:
$[(2n+1)+1]\cdot (n+1):2=169$
$\Rightarrow (2n+2)(n+1):2=169$
$\Rightarrow 2(n+1)^2:2=169$
$\Rightarrow (n+1)^2=(\pm13)^2$ (1)
Vì \(n\in \mathbb{N^*}\) nên \(n+1>0\) (2)
Từ (1) và (2) $\Rightarrow n+1=13$
$\Rightarrow n=13-1=12(tm)$
Vậy $n=12$.
\(1+3+5+...+\left(2n+1\right)=169\)
\(\Rightarrow\left[\left(2n+1-1\right):2+1\right]\left(2n+1+1\right):2=169\)
\(\Rightarrow\left(2n:2+1\right)\left(2n+2\right):2=169\)
\(\Rightarrow\left(n+1\right)\left(n+1\right)=169\)
\(\Rightarrow\left(n+1\right)^2=169\)
\(\Rightarrow\left(n+1\right)^2=13^2\)
TH1:
\(\Rightarrow n+1=13\)
\(\Rightarrow n=12\) (thỏa mãn)
TH2:
\(\Rightarrow n+1=-13\)
\(\Rightarrow n=-14\) (không thỏa mãn )
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 2n-6+7 chia het n- 3
=> 7 chia het n-3
n-3={+1-+-7}
n={-4,2,4,10} loai -4 di
b) n^2+3 chia (n+1)
n^2+n-n-1+4 chia n+1
n+ 1={+-1,+-2,+-4}
n={-5,-3,-2,0,1,3} loai -5,-3,-2, di
n={013)
![](https://rs.olm.vn/images/avt/0.png?1311)
a : 2n + 1 ⋮ n - 3 <=> 2n - 6 + 7 ⋮ n + 3 <=> 2( n - 3 ) + 7 ⋮ n - 3
=> 7 ⋮ n - 3 => n - 3 thuộc ước của 7 => U(7) = { 1 ; 7 }
=> n - 3 = { 1 ; 7 }
=> n = { 4 ; 11 }
b ) n2 + 3 ⋮ n + 1 <=> n2 - 1 + 4 ⋮ n + 1 => ( n - 1 ) ( n + 1 ) + 4 ⋮ n + 1
=> 4 ⋮ n + 1 <=> n + 1 thuộc ước của 4 => Ư(4) = { 1 ; 2 ; 4 }
=> n + 1 = { 1 ; 2 ; 4 }
=> n = { 0 ; 1 ; 3 }
a) 2n+1 chia hết cho n-3=>2n-6+7 chia hết cho n-3=>7 chia hết cho n-3=>n-3 thuộc Ư(7) từ đó tính tiếp
![](https://rs.olm.vn/images/avt/0.png?1311)
dãy trên có số số hạng :( 2n-1-1) : 2 +1=n số hạng
tổng trên : (2n-1+1).n :2=n^2
suy ra : n^2 =231
nhưng không có tích 2 số tự nhiên nào bằng 231
suy ra n không tồn tại