Chứng tỏ đa thức sau ko có nghiệm:
a) x2-x+5
Giúp mik nha! Mik đg cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
a, \(x^2\) + 4\(x\) + 10
= ( \(x^2\) + 4\(x\) + 4) + 6
= (\(x\) + 2)2 + 6
vì (\(x\) + 2)2 ≥ 0
⇒ (\(x\) + 2)2 + 6 ≥ 6 > 0 vậy đa thức đã cho vô nghiệm (đpcm)
b, \(x^2\) - 2\(x\) + 5
= (\(x^2\) - 2\(x\) + 1) + 4
= (\(x\) - 1)2 + 4
Vì (\(x\) - 1)2 ≥ 0 ⇒ (\(x\) -1)2 + 4≥ 4 > 0
Vậy đa thức đã cho vô nghiệm (đpcm)
Vì x^4 luôn lớn hơn hoặc bằng 0
3 > 0
x^2 luôn lớn hơn hoặc bằng 0
Suy ra đa thức p(x) ko có nghiệm
a, P(x)=5x3+2x4-x2+3x2-x3-2x4+1-4x3
= (5x3 -x3 -4x3)+(2x4 -2x4)+(-x2+3x2)+1
= 2x2 + 1
b, ta có: P(1)=2.12+1=2+1=3
ta có:P(-1)=2.(-1)2+1=2+1=3
c, vì x2 ≥ 0 với mọi x
=> 2x2 ≥0
=> 2x2+1 ≥1
=> P(x) > 0
vậy đa thức P(x) vô nghiệm.
Ta có \(x.\left(x^2+x+1\right)-x^2.\left(1+x\right)-x-7\)
\(=x^3+x^2+x-x^2-x^3-x-7\)
\(=\left(x^3-x^3\right)-\left(x^2-x^2\right)-\left(x-x\right)-7\)
\(=-7\)
Do đó giá trị của biểu thức không phụ thuộc vào biến
Vậy...
Cho `M(x)=0`
`=>x^2+2x+2022=0`
`=>x^2+2x+1+2021=0`
`=>(x+1)^2=-2021` (Vô lí vì `(x+1)^2 >= 0` mà `-2021 < 0`)
Vậy đa thức `M(x)` không có nghiệm
\(A=2n^2\left(2n-1\right)-3\left(2n-1\right)+2=\left(2n^2-3\right)\left(2n-1\right)+2\)
Do \(\left(2n^2-3\right)\left(2n-1\right)⋮2n-1\)
\(\Rightarrow2⋮2n-1\)
\(\Rightarrow2n-1=Ư\left(2\right)\)
Mà 2n-1 luôn lẻ \(\Rightarrow2n-1=\left\{-1;1\right\}\)
\(\Rightarrow n=\left\{0;1\right\}\)
2.
\(Q=-\left(x^2+4x+4\right)-\left(y^2-2y+1\right)+7\)
\(Q=-\left(x+2\right)^2-\left(y-1\right)^2+7\le7\)
\(Q_{max}=7\) khi \(\left(x;y\right)=\left(-2;1\right)\)
Ta có:
Vì \(x\ge0\forall x\)
\(\Rightarrow x^2\ge0\forall x\)
\(\Rightarrow x^2-x\ge0\)
\(\Rightarrow x^2-x+5>0\forall x\)
Vậy đa thức \(x^2-x+5\) không có nghiệm
a, Ta có: \(x^2-x+5=x^2-2x\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{19}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{19}{4}\)
Ta thấy \(\left(x-\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
\(\Rightarrow x^2-x+5\) vô nghiệm
Vậy \(x^2-x+5\) không có nghiệm