a) Tính \(M=\sqrt{a^2+4ab^2+4b^4}-\sqrt{4a^2-12ab^2+9b^4}\)
Với \(a=\sqrt{2};b=1\)
b) Tính \(\dfrac{\sqrt{x}+\sqrt{3}}{3-x}.\left(\dfrac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\sqrt{a^2+4ab^2+4b^4}-\sqrt{4a^2-12ab^2+9b^4}\)
=\(\sqrt{\left(a+2b^2\right)^2}-\sqrt{\left(2a-3b^2\right)^2}\)
=\(\left|a+2b^2\right|-\left|2a-3b^2\right|\)
Thay a=\(\sqrt{2}\),b=1 vào A đã rút gọn có:
A= \(\left|\sqrt{2}+2.1^2\right|-\left|2\sqrt{2}-3.1^2\right|=\sqrt{2}+2-\left|2\sqrt{2}-3\right|\)
=\(\sqrt{2}+2-3+2\sqrt{2}=3\sqrt{2}-1\)
Vậy A=\(3\sqrt{2}-1\)
trước hết bạn hãy bấm nghiệm của chúng trên máy tính rồi tìm ĐKXĐ nhé !
b = 1 =>b2=b
=> A = \(\sqrt{a^2+4ab+4b^2}-\sqrt{4a^2-12ab+9b^2}\)
= \(\sqrt{\left(a+2b\right)^2}-\sqrt{\left(2a-3b\right)^2}\)
= \(\sqrt{\left(\sqrt{2}+2\right)^2}-\sqrt{\left(2\sqrt{2}-3\right)^2}\)
= \(\sqrt{2}+2-3+2\sqrt{2}\)
= \(3\sqrt{2}-1\)
Giải
A = \(\sqrt{\left(a+2b^2\right)^2}-\sqrt{\left(2a-3b^2\right)^2}\)
= \(\left|a+2b^2\right|-\left|2a-3b^2\right|\)
Với a = \(\sqrt{2}\); b = 1 thì
A = \(\left|\sqrt{2}+2\right|-\left|2\sqrt{2}-3\right|=\sqrt{2}+2+2\sqrt{2}-3=3\sqrt{2}-1\)
Lê Thị Thục HiềnTrần Thanh PhươngVũ Minh Tuấn?Amanda?
giup voi
Ta có :
\(A=\sqrt{\left(2a-3b\right)^2}+2\sqrt{\left(b-c\right)^2}+\sqrt{\left(2c-3a\right)^2}\)
\(A=\left|2a-3b\right|+2\left|b-c\right|+\left|2c-3a\right|\)
\(\ge3b-2a+2\left(c-b\right)+\left(3a-2c\right)=a+b\ge2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}3b-2a,c-b,3a-2c\ge0\\a=b=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=b=1\\1\le c\le\frac{3}{2}\end{cases}}}\)
Vậy Min A = 2 khi a = b = 1 và c \(\in\)\(\left[1,\frac{3}{2}\right]\)
Sau khi phân tích thành nhân tử ta có:
2a-3b+2b-2c+2c-3a
= -a-b<0
=> đẳng thức ko có nghĩa
2M\(\le\)a(9b+4a+5b)+b(9a+4b+5a) (AM-GM)
=4(a2+b2)+28ab\(\le\)4(a2+b2)+14(a2+b2) (AM-GM)
=36 (do a2+b2=2)
=> M \(\le\)18
Dấu bằng có <=> a=b=1
..