K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

Ta có \(\sqrt{bc\left(1+a^2\right)}=\sqrt{bc+a^2bc}=\sqrt{bc+a\left(a+b+c\right)}\)

\(=\sqrt{\left(a+b\right)\left(a+c\right)}\)

Đặt BT đề cho là P

\(\Leftrightarrow P=\sum\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}=\sum\sqrt{\dfrac{a}{a+b}\cdot\dfrac{a}{a+c}}\\ \Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{b+c}+\dfrac{b}{b+a}+\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\cdot3=\dfrac{3}{2}\)

Dấu \("="\Leftrightarrow a=b=c=\sqrt{3}\)

23 tháng 2 2023

31 tháng 8 2017

Xét \(\sqrt{\dfrac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}=\sqrt{\dfrac{\left(a\left(a+b+c\right)+bc\right)\left(b\left(a+b+c\right)+ac\right)}{c\left(a+b+c\right)+ab}}\)

\(=\sqrt{\dfrac{\left(a^2+ab+ac+bc\right)\left(ab+b^2+bc+ac\right)}{ac+bc+c^2+ab}}\)

\(=\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)}{\left(a+c\right)\left(b+c\right)}}\)\(=\sqrt{\left(a+b\right)^2}=a+b\)

Tương tự cho 2 đẳng thức còn lại rồi cộng theo vế

\(P=a+b+b+c+c+a=2\left(a+b+c\right)=2\)

14 tháng 10 2018

Ta có: bc(a2+1) = (a+b)(a+c)

\(\Rightarrow\) \(\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}\) =\(\sqrt{\dfrac{a}{a+b}}.\sqrt{\dfrac{a}{a+c}}\)

Áp dụng BĐT Cô-si: \(\sqrt{\dfrac{a}{a+b}}.\sqrt{\dfrac{a}{a+c}}\) \(\le\) \(\dfrac{1}{2}\left(\dfrac{a}{b+c}+\dfrac{a}{a+c}\right)\)

\(\Rightarrow\) \(\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}\) \(\le\) \(\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)

CMTT: \(\dfrac{b}{\sqrt{ac\left(1+b^2\right)}}\) \(\le\) \(\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{b}{a+c}\right)\)

\(\dfrac{c}{\sqrt{ab\left(1+c^2\right)}}\) \(\le\) \(\dfrac{1}{2}\left(\dfrac{c}{a+c}+\dfrac{c}{c+b}\right)\)

\(\Rightarrow\) S \(\le\) \(\dfrac{1}{2}\left(\dfrac{a}{b+a}+\dfrac{a}{c+a}+\dfrac{b}{a+b}+\dfrac{b}{c+b}+\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\)

\(\Rightarrow\) S\(\le\) \(\dfrac{1}{2}.3=\dfrac{3}{2}\)

Vậy Smax = \(\dfrac{3}{2}\)

Dấu "=" xảy ra\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=b=c\\a+b+c=abc\end{matrix}\right.\)

\(\Leftrightarrow\) \(a=b=c=\sqrt{3}\)

11 tháng 10 2018

Đề sai rồi: a,b,c > 0 thì làm sao mà có: ab + bc + ca = 0 được.

11 tháng 10 2018

mk viết nhầm

\(ab+bc+ca=1\)

bn giúp mk với

NV
21 tháng 3 2022

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(P=\sqrt{\dfrac{yz}{x^2+1}}+\sqrt{\dfrac{zx}{y^2+1}}+\sqrt{\dfrac{xy}{z^2+1}}\)

\(P=\sqrt{\dfrac{yz}{x^2+xy+yz+zx}}+\sqrt{\dfrac{zx}{y^2+xy+yz+zx}}+\sqrt{\dfrac{xy}{z^2+xy+yz+zx}}\)

\(P=\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\dfrac{zx}{\left(y+z\right)\left(x+y\right)}}+\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\)

\(P\le\dfrac{1}{2}\left(\dfrac{y}{x+y}+\dfrac{z}{x+z}\right)+\dfrac{1}{2}\left(\dfrac{z}{y+z}+\dfrac{x}{x+y}\right)+\dfrac{1}{2}\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}\right)=\dfrac{3}{2}\)

\(P_{max}=\dfrac{3}{2}\) khi \(x=y=z=\dfrac{1}{\sqrt{3}}\) hay \(a=b=c=\sqrt{3}\)