K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

ai giúp mik vs gấp lắm !!!!!!!!!!!!!!!!!!!!!!!!

6 tháng 4 2017

đề sai bạn ới ời ơi :v, có nghiệm nguyên đó

2x2-4y=10

=>4-4y=10

=>4y=4-10

=>4y=6

4 tháng 9 2016

\(2x^2-4y=10\)

\(< =>2\left(x^2-2y\right)=10< =>x^2-2y=5< =>x^2-5=2y\)

Dễ thấy 5 là số lẻ,2y là số chẵn

=>x2 phải là số lẻ do đó x lẻ thì luôn tìm đc y tương ứng

Lấy thử 1 VD bất kì : x=5;y=10 thì pt trên có nghiệm,chưa kể còn nhiều nữa

bn xem lại đề

10 tháng 3 2017

có nghiệm nguyên 

x=3 ;  y =2 thay vào ra 10

\(\Rightarrow x^2+2x+1-y^2-4y-4-7=0\\ \Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\\ \Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=16\\\left(y+2\right)^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x+1=4\\y+2=3\end{matrix}\right.\\\left\{{}\begin{matrix}x+1=-4\\y+2=-3\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

11 tháng 2 2022

Bạn làm như thế này là sai rồi nhé bạn dùng HDT số 3 rồi xét các ước của pt=> nghiệm nha

8 tháng 3 2020

Mình làm như thế này không biết đúng không:

x2=5+2yx2=5+2y

Xét x chẵn pt vô nghiệm

Xét x lẻ ⇒x=2k+1⇒x=2k+1 ; (kϵZ)(kϵZ)

4k2+4k+1=5+2y4k2+4k+1=5+2y

⇔4k2+4k−2y=4⇔4k2+4k−2y=4

⇔⇔2k2+2k−y=22k2+2k−y=2

Suy ra y chẵn trái với giả thiết

Do đó pt trên không có nghiệm nguyên 

8 tháng 3 2020

Mình làm như thế này không biết đúng không:

x2=5+2yx2=5+2y

Xét x chẵn pt vô nghiệm

Xét x lẻ ⇒x=2k+1⇒x=2k+1 ; (kϵZ)(kϵZ)

4k2+4k+1=5+2y4k2+4k+1=5+2y

⇔4k2+4k−2y=4⇔4k2+4k−2y=4

⇔⇔2k2+2k−y=2v

11 tháng 8 2019

\(2x^2-4y=10\)\(\Leftrightarrow2\left(x^2-2y\right)=10\Leftrightarrow x^2-2y=5\Leftrightarrow x^2-5=2y\)

Ta thấy: 5 là số lẻ,2y là số chẵn.\(\Rightarrow x^2\)là số lẻ do đó x lẻ luôn tìm được y tương ứng.

VD:x=5,y=10                  xem lại đề

Ai T.I.C.K cho mk may mắn cả tuần

Mk T.I.C.K lại cho

13 tháng 1 2020

mk cx thấy k đ 

NV
9 tháng 3 2022

\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+9=\left(2m-3\right)^2\ge0\) ; \(\forall m\)

\(\Rightarrow\) Phương trình đã cho luôn có 2 nghiệm với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m+1}{2}\\x_1x_2=\dfrac{m-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x_1+x_2\right)=-2m+1\\4x_1x_2=2m-2\end{matrix}\right.\)

Cộng vế với vế:

\(\Rightarrow2\left(x_1+x_2\right)+4x_1x_2=-1\)

Đây là hệ thức liên hệ các nghiệm ko phụ thuộc m

11 tháng 8 2020

Câu này trả lời được: ra 2

13 tháng 8 2020

\(2x^2-4y^2=10\)

\(\Leftrightarrow2\left(x^2-2y^2\right)=10\)

\(\Leftrightarrow x^2-2y^2=5\)

\(\Leftrightarrow\left(x-\sqrt{2}y\right)\left(x+\sqrt{2}y\right)=5\)

Lập bảng :

                       \(x-\sqrt{2}y\)                           5                                 1           
                         \(x+\sqrt{2}y\)                           1               5
                                 x                          3              7
                                y                     \(-\sqrt{2}\)              \(\sqrt{2}\)

.

\(\text{Δ}=\left(2m-1\right)^2-8\left(m-1\right)\)

\(=4m^2-4m+1-8m+8\)

\(=4m^2-12m+9=\left(2m-3\right)^2\)

Để phương trình có hai nghiệm phân biệt thì 2m-3<>0

hay m<>3/2

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}3x_1-4x_2=11\\x_1+x_2=\dfrac{-2m+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\2x_1+2x_2=-2m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x_1-4x_2=11\\4x_1+4x_2=-4m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=-4m+13\\4x_2=3x_1-11\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\4x_2=\dfrac{-12m+36}{7}-\dfrac{77}{7}=\dfrac{-12m-41}{7}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-4m+13}{7}\\x_2=\dfrac{-12m-41}{28}\end{matrix}\right.\)

Theo Vi-et, ta được: \(x_1x_2=\dfrac{m-1}{2}\)

\(\Leftrightarrow\dfrac{\left(4m-13\right)\left(12m+41\right)}{196}=\dfrac{m-1}{2}\)

\(\Leftrightarrow\left(4m-13\right)\left(12m+1\right)=98\left(m-1\right)\)

\(\Leftrightarrow48m^2+4m-156m-13-98m+98=0\)

\(\Leftrightarrow48m^2-250+85=0\)

Đến đây bạn chỉ cần giải pt bậc hai là xong rồi

9 tháng 3 2022

 \(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-12m+10\)

\(=\left(2m-3\right)^2+1>0\)

Vậy pt có 2 nghiệm pb  

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{2}\left(1\right)\\x_1x_2=\dfrac{m-1}{2}\left(2\right)\end{matrix}\right.\)

Ta có \(3x_1-4x_2=11\left(3\right)\)

Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}4x_1+4x_2=2-4m\\3x_1-4x_2=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x_1=13-4m\\x_2=\dfrac{1-2m}{2}-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{13-4m}{7}\\x_2=\dfrac{1-2m}{2}-\dfrac{13-4m}{7}\end{matrix}\right.\)

\(x_2=\dfrac{7-14m-26+8m}{14}=\dfrac{-19-6m}{14}\)

Thay vào (2) ta được \(\left(\dfrac{13-4m}{7}\right)\left(\dfrac{-19-6m}{14}\right)=\dfrac{m-1}{2}\)

\(\Leftrightarrow m=4,125\)