K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

\(\left(a\sqrt{b+1}+b\sqrt{a+1}\right)^2\le\left(a^2+b^2\right)\left(a+b+2\right)=a+b+2\le\sqrt{2\left(a^2+b^2\right)}+2=2+\sqrt{2}\)

\(\Rightarrow a\sqrt{b+1}+b\sqrt{a+1}\le\sqrt{2+\sqrt{2}}\)

7 tháng 4 2017

em cảm ơn haha

NV
6 tháng 8 2021

\(\left(a^2+b^2-2\right)\left(a+b\right)^2+\left(1-ab\right)^2+4ab=0\)

\(\Leftrightarrow\left[\left(a+b\right)^2-2\left(ab+1\right)\right]\left(a+b\right)^2+1+2ab+a^2b^2=0\)

\(\Leftrightarrow\left(a+b\right)^4-2\left(a+b\right)^2\left(ab+1\right)+\left(ab+1\right)^2=0\)

\(\Leftrightarrow\left[\left(a+b\right)^2-\left(ab+1\right)\right]^2=0\)

\(\Leftrightarrow\left(a+b\right)^2-\left(ab+1\right)=0\)

\(\Leftrightarrow ab+1=\left(a+b\right)^2\)

\(\Rightarrow\sqrt{ab+1}=\left|a+b\right|\) là số hữu tỉ (đpcm)

16 tháng 8 2016

Giả thiết là \(a,b\ge0\)thì chuẩn hơn.

\(\left(a+b\right)^2=a^2+b^2+2ab=1+2ab\ge1\text{ }\Rightarrow\text{ }a+b\ge1\)

Dấu bằng xảy ra khi \(2ab=0\Leftrightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\)

Ta có: \(\left(a-b\right)^2\ge0\Rightarrow\text{ }\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Rightarrow\left(a+b\right)^2\le2\Rightarrow a+b\le\sqrt{2}\)

Dấu bằng xảy ra khi \(a-b=0\Leftrightarrow a=b\)

\(P=\sqrt{1+2a}+\sqrt{1+2b}\)

Max: Áp dụng bđt đã sử dụng ở trên: \(\left(x+y\right)^2\le2\left(x^2+y^2\right)\)

\(P^2\le2\left(1+2a+1+2b\right)=4\left(a+b\right)+4\le4\sqrt{2}+4\)

\(\Rightarrow P\le\sqrt{4+4\sqrt{2}}=2\sqrt{1+\sqrt{2}}\)

Dấu bằng xảy ra khi \(a=b=\frac{1}{\sqrt{2}}\)

Min: Dùng bđt \(\sqrt{1+x}+\sqrt{1+y}\ge1+\sqrt{1+x+y}\text{ (1)}\left(x;\text{ }y\ge0\right)\)

\(\left(1\right)\Leftrightarrow1+x+1+y+2\sqrt{1+x}\sqrt{1+y}\ge1+1+x+y+2\sqrt{x+y+1}\)

\(\Leftrightarrow\sqrt{1+x}\sqrt{1+y}\ge\sqrt{1+x+y}\)

\(\Leftrightarrow xy+x+y+1\ge x+y+1\)

\(\Leftrightarrow xy\ge0\)

Do bđt cuối dúng với mọi \(x,y\ge0\) nên (1) đúng.

Dấu bằng xảy ra khi \(xy=0\Leftrightarrow\orbr{\begin{cases}x=0\\y=0\end{cases}}\)

\(P\ge1+\sqrt{1+2\left(a+b\right)}\ge1+\sqrt{1+2}=1+\sqrt{3}\)

Dấu bằng xảy ra khi \(\orbr{\begin{cases}a=0;\text{ }b=1\\a=1;\text{ }b=0\end{cases}}\)

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\text{VT}^2\leq (a^2+b^2)(1+a+1+b)=a+b+2\)

Áp dụng BĐT Cô-si:

\((a+b)^2\leq 2(a^2+b^2)=2\Rightarrow a+b\leq \sqrt{2}\)

Do đó: $\text{VT}^2\leq 2+\sqrt{2}$

$\Rightarrow \text{VT}\leq \sqrt{2+\sqrt{2}}$ (đpcm)

Dấu "=" xảy ra khi $a=b=\frac{1}{\sqrt{2}}$

 

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$C^2\leq (a+b)[(29a+3b)+(29b+3a)]=32(a+b)^2$

$(a+b)^2\leq (a^2+b^2)(1+1)\leq 4$

$\Rightarrow C^2\leq 32.4$

$\Rightarrow C\leq 8\sqrt{2}$
Vậy $C_{\max}=8\sqrt{2}$. Dấu "=" xảy ra khi $a=b=1$

14 tháng 5 2023

bài này khó giúp hộ em với

 

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Bài 1:

Áp dụng BĐT Bunhiacopxky ta có:

$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$

$\Leftrightarrow 3(a^2+b^2+c^2)\geq 1$

$\Leftrightarrow a^2+b^2+c^2\geq \frac{1}{3}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Bài 2: 

Áp dụng BĐT Bunhiacopxky:

$(a^2+4b^2+9c^2)(1+\frac{1}{4}+\frac{1}{9})\geq (a+b+c)^2$

$\Leftrightarrow 2015.\frac{49}{36}\geq (a+b+c)^2$

$\Leftrightarrow \frac{98735}{36}\geq (a+b+c)^2$

$\Rightarrow a+b+c\leq \frac{7\sqrt{2015}}{6}$ chứ không phải $\frac{\sqrt{14}}{6}$ :''>>